

Best Practices for Applied Rooftop Systems, Applications and Installation

Jerry Cohen President Jacco & Assoc.

• Established 1968

- Hudson, Ohio
- Columbus, Ohio
- Toledo, Ohio

Focused on the Engineered Environment

- Systems Knowledgeable
 - HVAC Systems
 - Service & Maintenance
 - Parts

Purpose Statement

The purpose of our Company is to solve our customers problems, in the most economical way, at all times optimizing the owning experience.

Full Circle Support

Owning Experience Operations

- –Brenda Homjak
- -Mike Spangler
- -Chad Russell

Owning Experience Construction

- -Elyse Perry
- –Maggie Sawicki

Owning Experience Engineering

–Greg Drensky

–Jerry Cohen

•30 Minute Design

- –Unit Performance
- -Drawing
- -Weights
- -Electrical
- -Specifications?
- -Sequence of Operation?
- -Cartoon?
- -Narrative?

2015 Seminars

Seminars	Instructor	Date
Psychrometrics	JKC	14-Jan
The Refrigeration Cycle	JKC	11-Feb
Energy Recovery	GAD	11-Mar
Applied Rooftop Systems	JKC	8-Apr
VRF Design & Installation	GAD	13-May
Geothermal Systems	GAD	10-Jun
Chilled Beam, Radiant Cooling & DOAS	ЈКС	12-Aug
Vertical Market Systems	GAD	9-Sep
Building Pressure & Air Flow Measurement	GAD	14-Oct
Controlling HVAC Systems - Sequence of Operations	JKC	11-Nov

Agenda

Define and relate in practical terms the following components:

- Supply, Return & Exhaust Fans
- Cooling & Heating Options
- Temperature Control Options
- Filtration Options
- Cabinet Options
- Psychrometrics of Motor Heat
- Best Installation Practices

Agenda

Explain common Applied Rooftop applications including:

- Variable Air Volume
- Single Zone Variable Air Volume
- Constant Air Volume

Questions for You

Is a DX Rooftop as Efficient as a Chilled Water system?

 What Constant are all Rooftops Designed Around?

Fans or Compressors?

		-	-		
5 [%] of the unit's operation		Peak Cooling Mode	Btu/hr	Watt	Horsepower
	requires one hundred-	Compressor Input Power	69,130	20,260	27.2
percent mechanical cooling capacity,		Backward Curved Plenum Fan Power	23,465	6,876	9.2
20% of the unit's operation is in		Heating Mode	Btu/hr	Watt	Horsepower
20	heating mode,	Compressor Input Power	0	0	0
		Backward Curved Plenum Fan Power	23,465	6,876	9.2
30%	of the unit's operation is	Unoccupied Mode	Btu/hr	Watt	Horsepower
	in an "unoccupied" mode	Compressor Input Power	6,913	2,026	2.7
	that requires ten-percent mechanical cooling capacity	Backward Curved Plenum Fan Power	23,465	6,876	9.2
45%	of the time the machine	Part Load	Btu/hr	Watt	Horsepower
40	is at a part load requiring	Compressor Input Power	34,565	10,130	13.6
	an average fifty-percent mechanical cooling capacity.	Backward Curved Plenum Fan Power	23,465	6,876	9.2
100%					
		Weighted Average Operating Fan and Compressor Power Consumption			
		Part Load	Btu/hr	Watt	Horsepower
		Compressor Input Power	21,085	6,179	8.3
		Backward Curved Plenum Fan Power	23,465	6,876	9.2

Fan and Compressor Power Consumption

 Fan System Effects occur because of the difference in inlet and outlet conditions under laboratory test conditions and the inlet and outlet conditions as the fan is installed in the system.

- Centrifugal and axial fans are usually tested with an outlet duct. Propeller fans are normally tested in the wall of a chamber or plenum. Power roof ventilators (PRV) are tested mounted on a curb exhausting from the test chamber.
- The System Effect includes **only** the effect of the system configuration on the fan's performance.
- ANSI/AMCA 210 specifies an outlet duct that is no greater than 105% or less than 95% of the fan outlet area. It also requires that the slope of the transition elements be no greater than 15° for converging elements or greater than 7° for diverging elements.
- Fan performance can be greatly affected by nonuniform or swirling inlet flow. Fan rating and catalog performance is typically obtained with unobstructed inlet flow. Any disruption to the inlet airflow will reduce a fan's performance. Restricted fan inlets located close to walls, obstructions or restrictions caused by a plenum or cabinet will also decrease the performance of a fan and add to the System Effect.

- Fans within plenums and cabinets or next to walls should be located so that air may flow unobstructed into the inlets. Fan performance is reduced if the space between the fan inlet and the enclosure is too restrictive. It is common practice to allow at least one-half impeller diameter between an enclosure wall and the fan inlet. Adjacent inlets of multiple double width centrifugal fans located in a common enclosure should be at least one impeller diameter apart if optimum performance is to be expected.
- Factory Supplied Accessories that have a System Effect.
 - Bearing and supports in fan inlet
 - Drive guards obstructing fan inlet
 - Belt tube in axial fan inlet or outlet
 - Inlet box
 - Inlet box dampers
 - Variable inlet vane (VIV)
 - Discharge dampers

- Total Pressure = Static Pressure + Velocity Pressure
 - Static Regain Converts Velocity Pressure to Static
 Pressure
- System Effect is Velocity Dependent
- You CAN NOT Measure System Effect
- You CAN Calculate System Effect, called System Effect Factor

19 Fan System Effect Curves

Overcome Fan System Effect

Outlet Requirements per AMCA

- If the outlet velocity is less than 2,500 fpm: 100 percent-effective duct length = 2.5 x Duct diameter
- If the outlet velocity is more than 2,500 fpm: 100 percent-effective duct length = fpm/1000 x Duct diameter

Outlet Conditions

Centrifugal Fan Outlet Conditions

To calculate 100% duct length, assume a minimum of 2½ duct diameters for 2500 fpm or less. Add 1 duct diameter for each additional 1000 fpm.

EXAMPLE: 5000 fpm = 5 equivalent duct diameters. If the duct is rectangular with side dimensions a and b, the equivalent duct diameter is equal to $(4 ab/\pi)^{0.5}$.

	No Duct	12% Effective Duct	25% Effective Duct	50% Effective Duct	100% Effective Duct
Pressure Recovery	0%	50%	80%	90%	100%
Blast Area Outlet Area	System Effect Curve				
0.4 0.5 0.6 0.7 0.8 0.9 1.0	P P R S S T-V V-W I	R-S R-S S-T U V-W W-X	U U U-V W-X X —	≥ ≥ ×	

Determine SEF by using Figure 7.1

Axial Fan Outlet Conditions

To calculate 100% duct length, assume a minimum of 2¹/₂ duct diameters for 12.7 m/s (2500 fpm) or less. Add 1 duct diameter for each additional 5.08 m/s (1000 fpm).

EXAMPLE: 25.4 m/s (5000 fpm) = 5 equivalent duct diameters

	No Duct	12% Effective Duct	25% Effective Duct	50 % Effective Duct	100% Effective Duct
Tubeaxial Fan					
Vaneaxial Fan	U	v	w		

Determine SEF by using Figure 7.1

Figure 8.2 - System Effect Curves for Outlet Ducts - Axial Fans

Inlet Requirements per AMCA

Fig. 27: Inlet Spacing Loss Coefficient

Centrifugal Fan Inlet Conditions

Figure 9.11A - Fans and Plenum

Figure 9.11B - Axial Fan Near Wall

Figure 9.11C - Centrifugal Fan Near Wall(s)

Figure 9.11D - DWDI Fan Near Wall on One Side

L - DISTANCE INLET TO WALL	For Figures 9.11A, B & C SYSTEM EFFECT CURVES	For Figures 9.11D SYSTEM EFFECT CURVES	
0.75 x DIA. OF INLET	V-W	x	
0.50 x DIA. OF INLET	U	V-W	
0.40 x DIA. OF INLET	т	V-W	
0.30 x DIA. OF INLET	S	U	

Determine SEF by calculating inlet velocity and using Figure 7.1

Inlet Conditions

a. IDEAL SMOOTH ENTRY TO DUCT ON A DUCT SYSTEM

BELL MOUTH INLET PRODUCES FULL FLOW INTO FAN

VENA CONTRACTA AT INLET REDUCES EFFECTIVE FAN INLET AREA

CONVERGING TAPERED ENTRY INTO FAN OR DUCT SYSTEM

e. FLANGED ENTRY INTO FAN OR DUCT SYTEM

Figure 9.1 Typical Inlet Connections for Centrifugal and Axial Fans

Belts & Sheaves

Fig. 29: Inlet Free Area Reduction Loss

Discharge Elbows and Tees

Fig. 31: Housed Discharge Elbows and Tee

Unducted Discharge Losses

Fig. 32: House Fan Unducted Discharge Losses

Fans

- FC Low Static, Lowest Efficiency
- BI High Efficient, High Static
- AF High Efficient, High Static
- Class I, II & III

Class I, II & III

Fig. 17: AMCA Fan Class

SWSI Fans

- Exhaust Fans
- Regeneration
 Fans
- Previous System
 Effect Applies

DWDI Fans

- Supply & Return
 Fans
- Previous System
 Effect Applies

Vane Axial Fans

- High Static
- High Volume
- Very High Efficiency
- Supply & Return
 Fans
- Previous System
 Effect Applies

Propeller Fans

- Low Static
- High Volume
- Exhaust Fans
- Previous System
 Effect Does Not
 Apply

-Velocity Pressure

Plenum Fans

- Typically BI or AF
- Supply, Return & Exhaust Fans
- Previous System
 Effect Does Not
 Apply

Plenum Fans

- Virtually no Velocity Pressure
 - Not Pushed Against the Housing Creating Unbalanced Outlet Velocity Profile
 - Motor is Out of the Way, No
 System Effect

Plenum Fan Inlet Conditions

Fig. 28: Airstream Approach Angle

Plenum Fan Outlet Conditions

Fig. 35: Plenum Fan cfm Correction for Side Restriction

Belt Driven Fans

Fig. 36: Belt Driven Fan System

Direct vs. Belt Driven Fans

- New Belts
 - Peak Efficiency 90-95%
- Worn Belts
 - 85-90% Efficient

Direct Driven Fans

What Fan Would You Choose?

Calculated Application Efficiency

	Motor Efficiency		Belt Efficiency		Fan Efficiency		System Effects		Total System Efficiency
Belt-Driven, Housed, Forward Curved Total Efficiency =	(0.90)	•	(0.87)	•	(0.60)	•	<mark>(</mark> 0.70)	=	33%
Belt-Driven, Housed, Backward Curved Total Efficiency =	(0.90)	•	(0.87)	•	(0.75)	•	(0.80)	=	47%
Direct Drive, Unhoused Backward Curved, Total Efficiency =	(0.90)	•	(1.00)	•	(0.70)	•	(1.00)	=	63%

ECM Motors & VFD's

ECM Motors & VFD's

- ECM = AC to DC Speed Control
- VFD = AC to DC to AC Speed Control
- Soft Start
- Balancing Tool

Return Fans or Exhaust Fans

- Assume 6400 CFM, 15 Ton Unit
 - 1" Supply ESP & .50" Return ESP
- Exhaust Supply Fan Sized for 1.5" ESP
- Exhaust Fan Sized for .5" ESP
 7.5 HP SF & 3 HP EF
- Return Supply Fan Sized for 1" ESP
- Return Fan Sized for .5" ESP
 5 HP SF & 2 HP RF

Cooling Options

- Chilled Water
- Direct Expansion

Aaon Evaporative Condensing Chiller

Chilled Water Coils

• Multiple Coil Options

Direct Expansion

Direct Expansion

- Air Source & Water Source
- Multiple Coil Options
- Expansion Devices
 - Thermal Expansion Valve
 - Electronic Expansion Valve

High Capacity DX Coils

- Increased Efficiency
- Increased Dehumidification

Micro Channel Condenser Coils

- Reduced Refrigerant Amounts By 40%
- Think Car Radiator

Compressors

- Single Stage Compressors
- Multiple Staging with Multiple Compressors
- Modulating Compressors
 - Scroll Digital & VFD
 - Screw VFD
 - Centrifugal Magnetic
- Or Hot Gas Bypass

Head Pressure Control

- Variable Speed Condenser Fan Provides Energy Savings
 - -Variable Speed Compressors
 - Fluctuating Ambient Conditions
- Similar to Cooling Tower with VFD's

Heating Options

- Steam Heat
- Hot Water Heat
- Electric Heat
- Gas Heat
- Heat Pump & Hybrid Heat

Steam Heat

Steam Heat

- Single Coil for Normal Heating
- Single Coil for 100% OA
- Two Coils for 100% OA (PH & RH)
- F&BP for 100% OA

– Internal, External & Integral F&BP

Hot Water Heat

Hot Water Heat

- Single Coil for Normal Heating
- Single Coil for 100% OA
- Two Coils for 100% OA
- F&BP for 100% OA

– Internal, External & Integral F&BP

Electric Heat

- Open Wire & Fin Tubular Element
- Multiple Stages with Contactors
- Modulating with SCR Controls

Gas Heat

- Staging
- Modulating

Gas Heat

• 1 Stage

– 40 Degree TR = 40 Degree Minimum TR

- 2 Stage
 - 40 Degree TR = 20 Degree Minimum TR
- 4 Stage
 - 40 Degree TR = 10 Degree Minimum TR

Gas Heat

- 3:1 Modulation
 - 90 Degree TR = 30 Degree Minimum TR
- 5:1 Modulation
 - 90 Degree TR = 18 Degree Minimum TR
- 10:1 Modulation
 - 90 Degree TR = 9 Degree Minimum TR
- 20:1 Modulation
 - 90 Degree TR = 4.5 Degree Minimum TR

Hybrid Heat

- Primary Air Source Heat Pump
- Primary Water Source Heat Pump
- Secondary Gas, HW, Steam or Electric

Hybrid Heat for 100% OA

- Infinite TR
- 3:1 Modulation
 90 Degree TR = 1 Degree Minimum TR
- 5:1 Modulation
 - 90 Degree TR = 1 Degree Minimum TR
- 10:1 Modulation
 - 90 Degree TR = 1 Degree Minimum TR

Temperature Controls

- Factory Analog
- Factory Digital
 - BACnet or LON Compatibility
- Factory Mounted DDC by Others
- Field Mounted DDC by Others
 - Isolation Relays

Filtration Options

- MERV 7 or 8
- MERV 13, 14 or 15
 4" or 12"
- Clogged Filter Switch
- Magnehelic Gauge

Fig. 23: VAV System with Filter Loading

Cabinet Construction

- 2500 Hour Salt Spray Testing per ASTM B 117-95
- 2" Double Wall Panels
- R-13 Foam Insulation
- Full Thermal Break
- Galvanized or Stainless Steel Construction
- Stainless Steel Piano Hinges and Corrosion Resistant Lockable Handles
- Sloped Stainless Steel Drain Pan

2,500 Hour Salt Spray Test

- ASTM B 117-95 Testing Procedure
- 5% Salt Spray & Fog Atmosphere
- Stopped At First Visible Sign Of Deterioration
- Can Be Custom Color

Aaon

8 year old custom unit with 1,000 Hr. Salt Spray Test

Double Wall Foam Panel Construction

- Thermal Resistance & Break
- Air Seals
- Rigidity
- Maintainability
- Indoor Air Quality
- Equipment Life
- Energy Savings

AAON Rigid Polyurethane Foam Panels

AAON Rigid Polyurethane Foam Panels

Double Wall Foam Panel Energy Savings

Figure 8: ASHRAE Climate Zones

	Nominal Tons									
	5	10	20	35	75	125	175	210]	
Atlanta	\$91	\$170	\$310	\$553	\$1,142	\$1,722	\$2,353	\$2,794	1	
Chicago	\$154	\$287	\$522	\$931	\$1,924	\$2,985	\$4,078	\$4,843	1	
Houston	-	-	-	-	-	-	-	-	1	
Los Angeles	-	-	-	-	-	-	-	-	1	
Miami	-	-	-	-	-	-	-	-	1	
Minneapolis	\$177	\$331	\$603	\$1,074	\$2,221	\$3,446	\$4,707	\$5,590	1	
New York	\$130	\$242	\$440	\$784	\$1,622	\$2,516	\$3,437	\$4,081	1	
Sacramento	\$107	\$200	\$364	\$649	\$1,342	\$2,084	\$2,846	\$3,380	1	
Seattle	\$146	\$273	\$497	\$886	\$1,833	\$2,844	\$3,885	\$4,613	1	
Tulsa	\$105	\$196	\$356	\$635	\$1,313	\$2,037	\$2,783	\$3,305	1	

	Nominal Tons										
	5	10	20	35	75	125	175	210			
Atlanta	\$151	\$295	\$574	\$1,009	\$2,139	\$3,496	\$4,861	\$5,818			
Chicago	\$74	^{\$} 144	\$279	\$491	\$1,040	\$1,693	\$2,351	\$2,812			
Houston	\$278	\$544	\$1,058	\$1,861	\$3,946	\$6,442	\$8,958	\$10,719			
Los Angeles	\$46	^{\$} 91	\$177	\$311	\$662	\$1,088	\$1,516	\$1,816			
Miami	\$394	\$769	\$1,493	\$2,628	\$5,569	\$9,089	\$12,635	^{\$} 15,117			
Minneapolis	\$67	\$130	\$253	\$444	\$941	\$1,534	\$2,133	\$2,552			
New York	\$82	\$159	\$308	\$542	\$1,147	\$1,867	\$2,593	\$3,101			
Sacramento	\$56	\$106	\$198	\$350	\$731	\$1,158	\$1,158	\$1,898			
Seattle	\$14	\$27	\$51	\$89	\$187	\$302	\$418	\$500			
Tulsa	\$166	\$324	\$625	\$1,100	\$2,327	\$3,781	\$5,249	\$6,277			

Table 12: Estimated Cooling Savings from AAON Rigid Polyurethane Foam Cabinet (\$0.12/kWh and \$1.20/therm)

 Table 13: Estimated Heating Savings from AAON Rigid Polyurethane Foam Cabinet (\$0.12/kWh and \$1.20/therm)

Heating Savings

Psychrometrics of Motor Heat

- Draw Through
- Blow Through

Applications – Blow Through

- Large VAV systems
- High sensible loads
- Higher efficiency requirements
- Sound sensitive applications

Blow Through

C/Program Files (x86)UACCO Psychrometric Analysis Design Suite V7/Draw Through.hdd

Applications – Draw Through

- Compact space requirements
- High latent loads
 - Pools
 - Underfloor or Displacement
- Initial cost constraints

Draw Through

C:Program Files (x86)LIACCO Psychrometric Analysis Design Suite V7/Draw Through.hdd

Traditional VAV Systems

- Traditional VAV systems feed multiple zones from one unit
- Supply airflow changes to maintain supply duct pressure
- Unit capacity changes to maintain supply air temperature

Minimum VAV Flow

Single Zone VAV Systems

- Single Zone VAV systems serve one zone.
- Airflow changes based on space load
- Unit capacity changes to maintain supply air temperature
- SAT set point can be reset to maintain humidity control (if reheat available)
- VAV boxes not required

SZVAV Fan Energy Savings

SZVAV Sound Benefit

Another benefit to airflow reduction is the reduction in fan noise due to change in speed

Single Zone VAV Controls

Best Installation Practices

- Location
- Clearance
- Sound
- Isolation

- Spring or Rubber in Shear (RIS)

Acoustical Considerations

Proper unit placement is critical to reducing transmitted sound levels from the unit to the building. Do not locate units directly above areas such as: <u>offices, conference rooms, executive office</u> <u>areas, and classrooms</u>. Instead, ideal locations to consider are: <u>corridors, utility rooms, toilets, or other areas</u> where higher sound levels directly below the units are acceptable.

1. Never cantilever the compressor side of the unit. A structural cross member or full perimeter roof curb, supported by roof structural members, must support this side of the unit.

2. Locate the unit's center of gravity close to or over column or main support beam.

3. If the roof structure is very light, replace roof joists by a structural shape in the critical areas described above.

4. If several units are to be placed on one span, stagger them to reduce deflection over that span.

5. Use the quietest fans available!!!!

Poor Man Acoustical Curb

SPECIFICATIONS: NOMINAL SIZE: 1" W X 3/4" H MATERIAL: NEOPRENE TYPE SCE 42 (CLOSED CELL) TREATMENT: PRESSURE SENSITIVE ADHESIVE ON 1" SIDE

Clearance Requirements

Follow the recommended unit clearances to assure adequate serviceability, maximum capacity, and peak operating efficiency.

1. Do the clearances available allow for major service work, such as changing compressors or coils?

2. Do the clearances available allow for proper outside air intake, exhaust air removal, and condenser airflow?

3. If screening around the unit is used, is there a possibility of air recirculation from the exhaust to the outside air intake or from condenser exhaust to condenser intake.

When two or more units are placed side by side, increase the distance between the units to twice the recommended single unit clearance. Stagger the units for these two reasons:

1. To reduce span deflection if more than one unit is placed on a single span.

2. To assure proper exhaust air diffusion before contact with the adjacent unit's outside air intake.

Duct Design

A well-designed duct system is essential to meet the rated capacities of the unit .

1. Satisfactory air distribution throughout the system requires an unrestricted and uniform airflow from the unit discharge duct.

2. When job conditions dictate installation of elbows near the unit outlet, using turning vanes may reduce capacity loss and static pressure loss.

3. Plenum return duct design should incorporate multiple turns before return air openings.

AAON Rooftops

- Rooftop Package Units
 –2 to 300 tons in 7 cabinet sizes
 - Air Cooled Condensing
 - Water Cooled Condensing
 - Evaporative Condensing
 - Geothermal
- Rooftop air handling units 800 to 70,000 cfm

The RQ Series Rooftop

- 2 through 6 Tons
- A Different Choice

The RN Series Rooftop

- 6 through 140 Tons
- Large Capacity, Small Footprint, Lightweight

The RL Series Rooftops

40 through
 300 Tons

RL Series Evaporative Condensing

AAON Rooftop Heat Pumps

- Air Source to 40 tons
- Water Source/ Geothermal to 140 tons +++
- 100% Outside Air Units
- Supplemental Heat (Electric, Gas, Hot Water, Steam)
 - Auxiliary Heating
 - Emergency Heating

Some AAON Rooftop Applications

- Pool Units
- Make Up Air Units
- Tight Humidity Control Units
- Tight Temperature Control Units
- Heat Recovery Units
 - Coming Soon Plate Heat Exchangers
- Coming Soon Horizontal Duct Connections

Seismic Certification Compliance

- RQ & RN Rooftop Units (2-30 tons)
- IBC-2000
- IBC-2003
- IBC-2006
- IBC-2009
- IBC-2012

Tulsa, OK Facility

- 1.3 M sq. ft. on 54 acres
- 1,160 employees
- Rooftop package units
- Rooftop air handlers
- Chillers/Boiler/Pumping packages
- Large condensing units
- Large air handlers

Longview, TX Facility

- AAON Coil Products, Inc. was founded in 1991 with the acquisition of Coils Plus, Inc. of Longview, Texas.
- 251,000 sq. ft.
- 25 acres
- 394 employees
- Coils, condensing units, air handlers, residential products

Aaon Rooftops w/ Oil Free Magnetic Bearing Centrifugal Compressors - from 90-300 Tons

Question for You

 Is a DX Rooftop as Efficient as a Chilled Water System?

Thank You