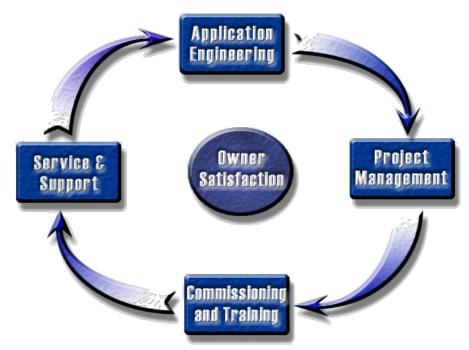


The Refrigeration Cycle

Jerry Cohen
President
Jacco & Assoc.


- Established 1968
 - Hudson, Ohio
 - Columbus, Ohio
 - Toledo, Ohio
- Focused on the Engineered Environment
- Systems Knowledgeable
 - -HVAC Systems
 - -Service & Maintenance
 - –Parts

Purpose Statement

The purpose of our Company is to solve our customers problems, in the most economical way, at all times optimizing the owning experience.

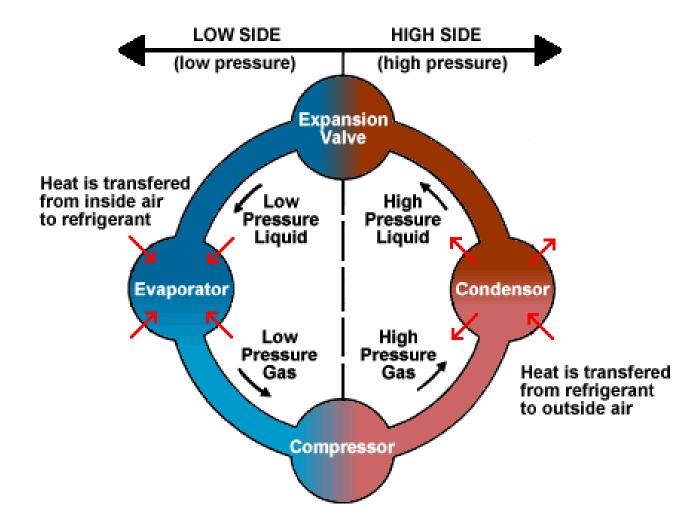
- Operations
 - -Brenda Homjak
 - -Mike Spangler
 - -Chad Russell
 - -Mike Mueller
- Contractor Owning Experience
 - -Maggie Sawicki
 - -Rick Baker
- Engineering Owning Experience
 - –Greg Drensky
 - -Jerry Cohen
- Owning Experience
 - -Steve Leister
 - -Gloria Schwartz
 - -Jeff Watson

•30 Minute Design

- -Unit Performance
- -Drawing
- -Weights
- -Electrical
- -Specifications?
- -Sequence of Operation?
- -Cartoon?
- -Narrative?

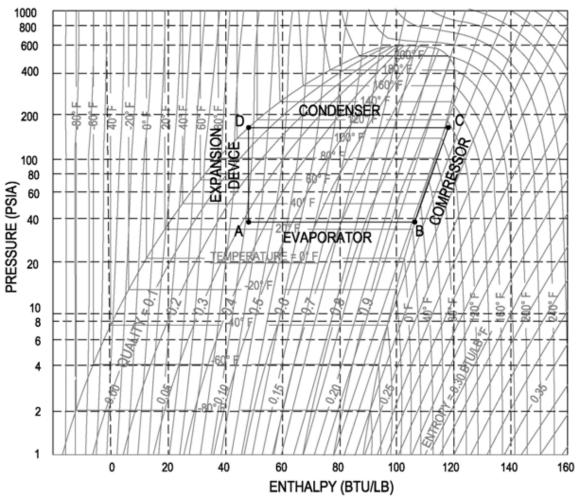
2016 Seminars

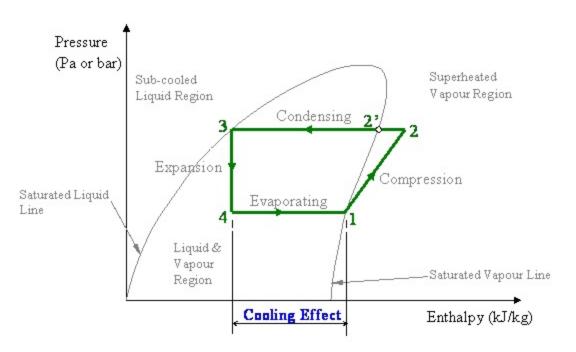
Psychrometrics	Jerry Cohen	13-Jan
The Refrigeration Cycle	Jerry Cohen	10-Feb
Best Practices for VRF Systems - Design	Greg Drensky	9-Mar
Best Practices for VRF Systems - Installation	Steve Leister	13-Apr
Best Practices for Applied Rooftop Systems, Applications & Installation	Jerry Cohen	11-May
Applying Energy Recovery Systems	Greg Drensky	14-Sep
OFCC Applicable Systems - Pro's & Con's	Greg Drensky	12-Oct
Applying Building Pressure & Air Flow Measurement Instrumentation	Greg Drensky	9-Nov
Controlling HVAC Systems with Special Emphasis on Sequence of Operations	Jerry Cohen	14-Dec



Agenda

- Basic Refrigerant Cycle
- P/h Chart
- Compressor Options
- Condenser Options
- Head Pressure Control
- Thermal Expansion
- Evaporator Options
- Lift
- Evaporative Condensing
- Water Treatment
- A Word From Our Sponsor





P/h Chart - Isotherm

P/h Chart

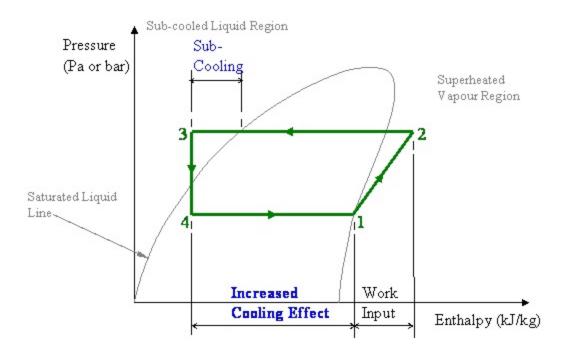
p-H Diagram of Refrigeration Cycle

Superheat & Subcooling

Defining Superheat

Superheat is defined as the difference between the temperature at which the refrigerant boils at the given pressure in the evaporator, and the temperature of the refrigerant gas as it leaves the evaporator. In essence, it's how much extra temperature the refrigerant picks up after it has boiled

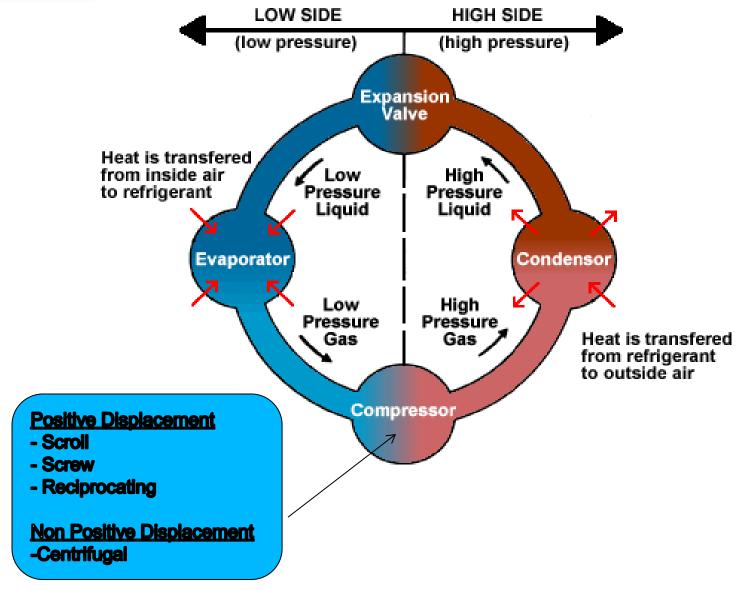
Heating of a gas, at a constant pressure, above the point at which it has boiled.


Defining Sub-Cooling

Sub-Cooling is defined as the difference between the temperature at which the refrigerant condenses at the given pressure in the condenser, and the temperature of the liquid refrigerant gas as it leaves the condenser. In essence, it's how much extra temperature the refrigerant cools after it has condensed.

Cooling of a liquid, at a constant pressure, below the point at which it was condensed.

P/h Chart


p-H Diagram of Refrigeration Cycle with Sub-Cooling

What is a Compressor?

Scroll Compressor

- Limited to ~ 25 HP
- Tandem Compressor Options
- With or Without VFD



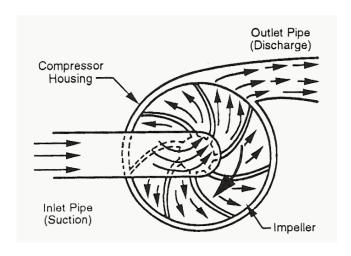
Digital Scroll Compressor

Digital Scroll

Screw Compressor

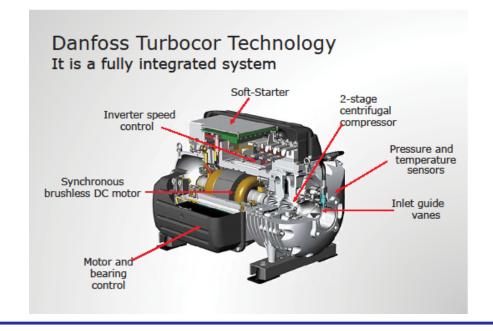
- Limited to ~ 500 HP
- With or Without VFD

Reciprocating Compressor


Limited to ~ 100 HP

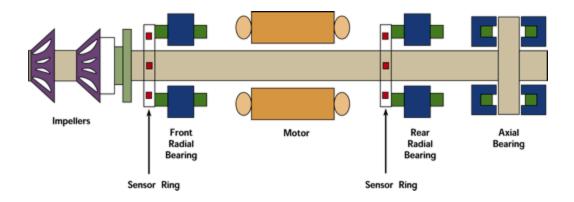
Centrifugal Compressor

- Virtually Unlimited
- With or Without VFD



Non Positive Displacement compressors raise the pressure and temperature of the refrigerant by converting kinetic energy into pressure.

Centrifugal Compressor


- Oil Free Magnetic Bearing Centrifugal
- With VFD
- Limited to 75 & 150 HP

Magnetic Bearings

- Oil Free Magnetic Bearing Centrifugal
- Limited to 75 & 150 HP

Hot Gas Bypass

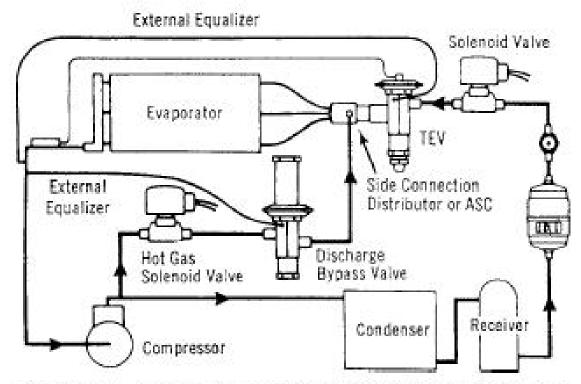
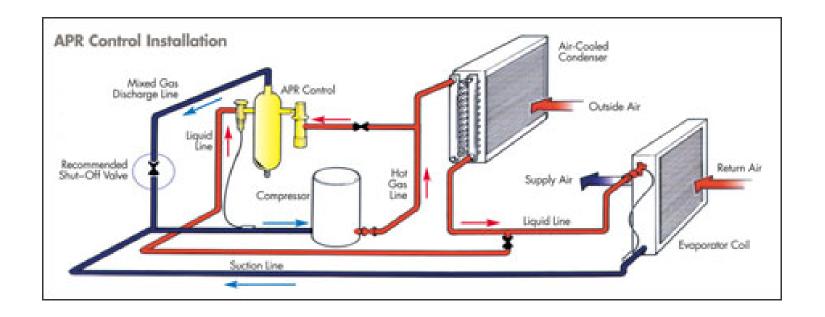
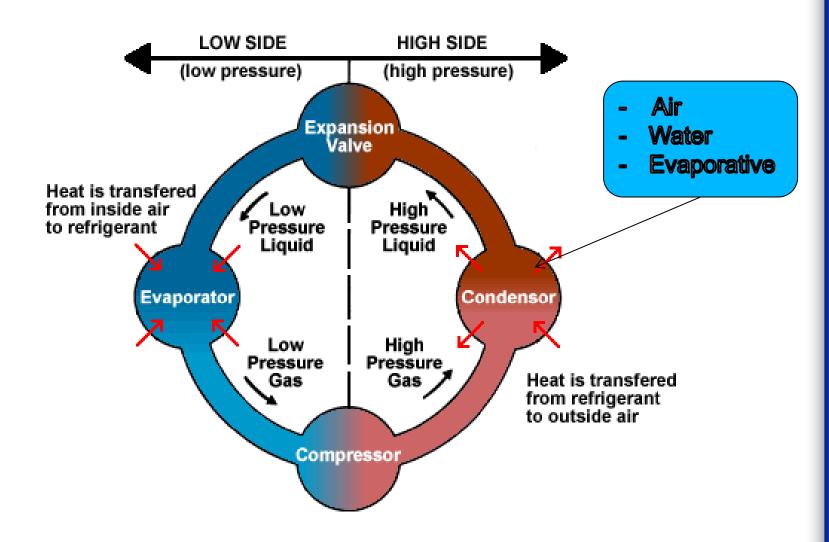
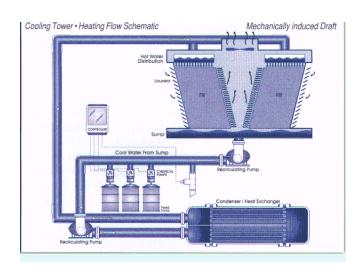



Figure 11-38 Connection arrangement for a discharge-bypass valve. (Courtesy of Sporlan Valve.)


Hot Gas Bypass

Condenser – Air Cooled

- Given 95 db/75 wb
- 125 Condensing Temperature



Condenser – Water Cooled

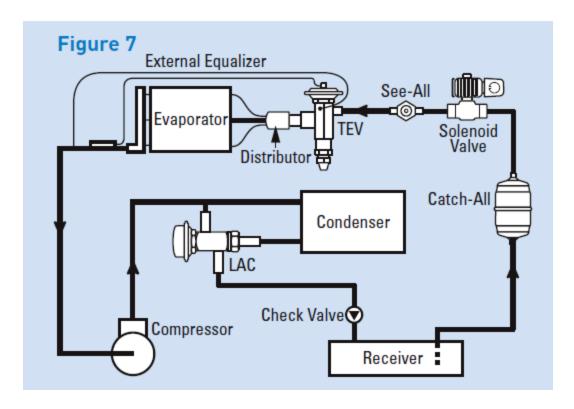
- Given 95 db/75 wb
- 105 Condensing Temperature

Condenser – Evaporative Cooled

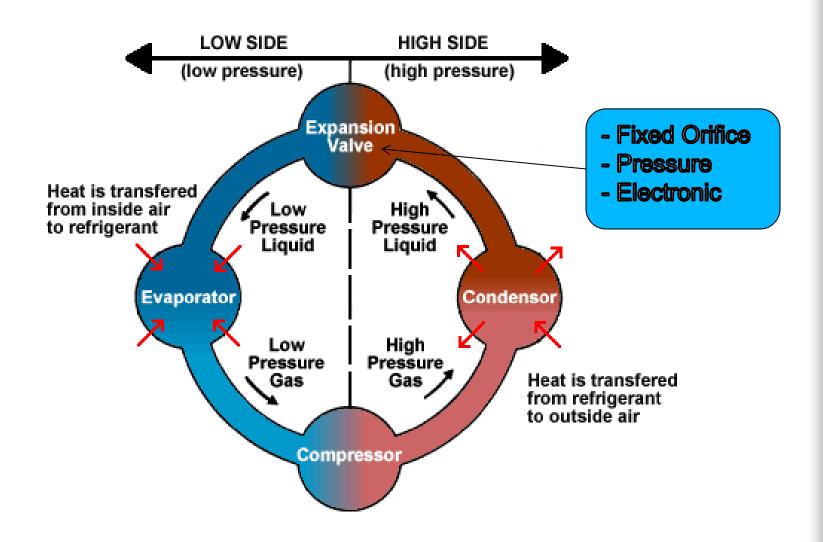
- Given 95 db/75 wb
- 105 Condensing Temperature

Why Head Pressure Control

- Variable Speed Compressors
- Fluctuating Ambient Conditions
- Energy Savings
- Assure Proper TXV Operation


Common Head Pressure Control

- Condenser Fan Cycling
- Variable Speed Condenser Fan
 - Picture Cooling Tower w/ VFD

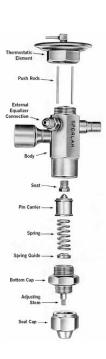


Low Ambient Head Pressure Control

Flooded Condenser

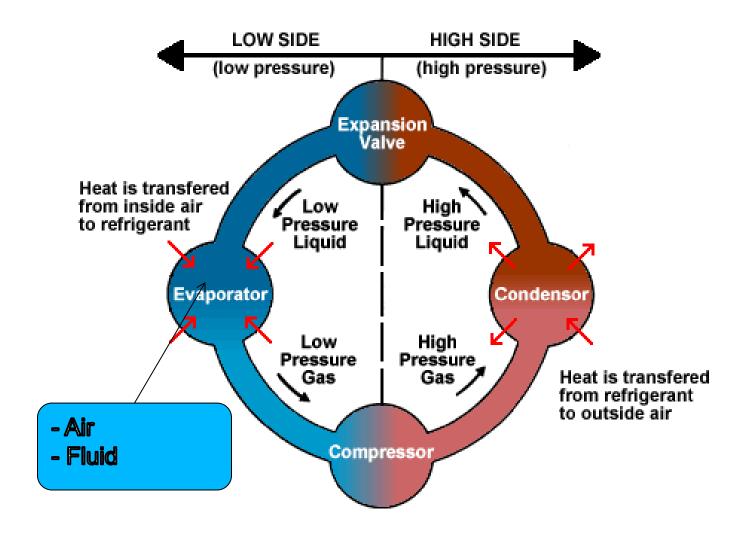
Capillary Tube, Fixed Orifice, Thermal Expansion

Cheap but Effective



Pressure Thermal Expansion

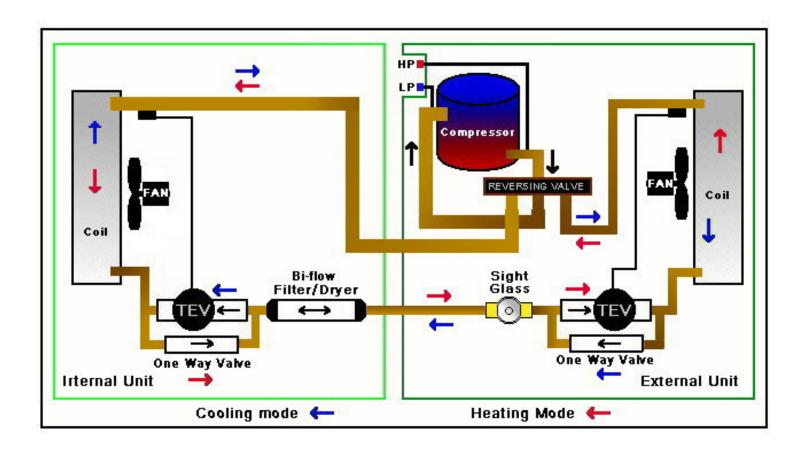
Old and Stable Technology


Electronic Thermal Expansion

Very Controllable

Evaporator – Air Cooled

- Given 55 Degree LAT
- 45 Degree Suction Temperature


Evaporator – Chilled Water

- Given 55 Degree LAT
- 45 Degree Chilled Water/Glycol
- 35 Degree Suction Temperature

Heat Pump Refrigeration Cycle

Pump Out vs. Pump Down

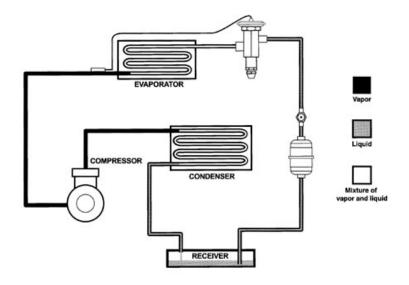
 The purpose of Pump Down and Pump Out is to minimize the effects of migration, which can result in a flooded start on the next startup.

Pump Out

• Also known as a "one time pump out", is conducted by closing a solenoid in the liquid line while the compressor is still running, all of the refrigerant in the system downstream of the solenoid is removed. The compressor is shutdown by a low pressure control, and remains off until the next call for cooling which opens the solenoid valve and closes the contacts for the compressor. Thus the compressor pumps out the system after each running cycle, then remains off until the next call for cooling.

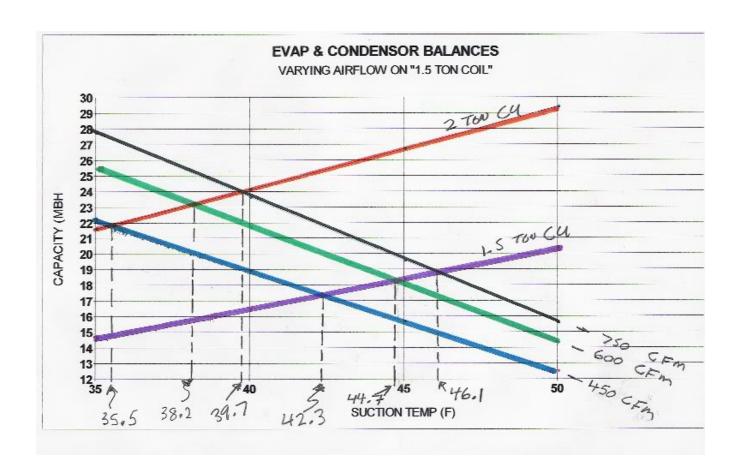
Pump Down

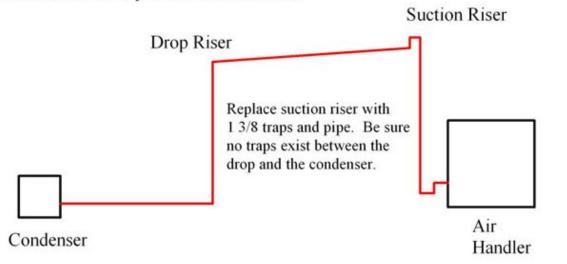
• Also known as "continuous pump down", is conducted exactly the same way as pump-out with the exception that the call for cooling ONLY controls the solenoid. Thus, during a normal running cycle, when demand is met, the solenoid is closed. The compressor pumps out all of the refrigerant downstream of the solenoid then shuts of on a low pressure control. The difference being that the compressor is allowed to restart any time the low pressure control makes, thus keeping the suction side of the system pumped down continuously. This usually comes into play if there is a leaking pump down solenoid.


Accumulators and Receivers

 A vessel for holding refrigerant liquefied by the condenser.

A vessel for preventing liquid slugging of the


compressor.


Condenser/Evaporator Balance

Refrigerant Field Piping

All piping must pitch from the top of the suction riser down to the condenser without any additional lifts or traps. The fall needs to be 1/8th per foot. The suction riser must be straight up with no 45's or elbows. Suction line should be 1 5/8OD. Elbows to be long radius. All existing system traps other than suction riser should be eliminated from the suction line. Liquid line can be left alone.

Evaporative Condensing

 Water Cooled WITHOUT the Condenser Pump

The Compressor is a Pump

- Air Cooled
- 35 Suction & 125 Condensing

- Water & Evaporative Cooled
- 35 Suction & 105 Condensing

Refrigerant Pressure/Temperature Chart

HFC-134a

105 Condensing
Temperature =

134.9 PSIG

HFC-410a 105 Condensing Temperature = 339.9 PSIG

Tempe	rature		F	Refrigerar	nt		Tempe	erature	Refrigerant				
۰F	°C	R-22	R-410a	R-407c	R-134a	R-404a	٥F	°C	R-22	R-410a	R-407c	R-134a	R-404a
-60	-51.1	11.9	0.9	16.0	21.6		27	-2.8	51.2	91.6	44.7	23.7	66.
-55	-48.3	9.2	1.8	13.7	20.2	-	28	-2.2	52.4	93.5	45.9	24.5	67.
-50	-45.6	6.1	4.3	11.1	18.6		29	-1.7	53.7	95.5	47.1	25.3	69.
-45	-42.8	2.7	7.0	8.1	16.7	-	30	-1.1	54.9	97.5	48.4	26.1	70.
-40	-40.0	0.6	10.1	4.8	14.7	4.9	31	-0.6	56.2	99.5	49.6	26.9	72.
-35	-37.2	2.6	13.5	1.1	12.3	7.5	32	0.0	57.5	101.6	50.9	27.8	73.
-30	-34.4	4.9	17.2	1.5	9.7	10.3	33	0.6	58.8	103.6	52.1	28.6	75.
-25	-31.7	7.5	21.4	3.7	6.8	13.5	34	1.1	60.2	105.7	53.4	29.5	76.
-20	-28.9	10.2	25.9	6.2	3.6	16.8	35	1.7	61.5	107.9	54.8	30.4	78.
-18	-27.8	11.4	27.8	7.2	2.2	18.3	36	2.2	62.9	110.0	56.1	31.3	80.
-16	-26.7	12.6	29.7	8.4	0.7	19.8	37	2.8	64.3	112.2	57.5	32.2	81.
-14	-25.6	13.9	31.8	9.5	0.4	21.3	38	3.3	65.7	114.4	58.9	33.1	83.
-12	-24.4	15.2	33.9	10.7	1.2	22.9	39	3.9	67.1	116.7	60.3	34.1	85.
-10	-23.3	16.5	36.1	11.9	2.0	24.6	40	4.4	68.6	118.9	61.7	35.0	86.
-8	-22.2	17.9	38.4	13.2	2.8	26.3	41	5.0	70.0	121.2	63.1	36.0	88.
-6	-21.1	19.4	40.7	14.6	3.7	28.0	42	5.6	71.5	123.6	64.6	37.0	90.
-4	-20.0	20.9	43.1	15.9	4.6	29.8	43	6.1	73.0	125.9	66.1	38.0	92.
-2	-18.9	22.4	45.6	17.4	5.5	31.7	44	6.7	74.5	128.3	67.6	39.0	94.
0	-17.8	24.0	48.2	18.9	6.5	33.7	45	7.2	76.1	130.7	69.1	40.0	95
1	-17.2	24.8	49.5	19.6	7.0	34.7	46	7.8	77.6	133.2	70.6	41.1	97.
2	-16.7	25.7	50.9	20.4	7.5	35.7	47	8.3	79.2	135.6	72.2	42.2	99.
3	-16.1	26.5	52.2	21.2	8.0	36.7	48	8.9	80.8	138.2	73.8	43.2	101
4	-15.6	27.4	53.6	22.0	8.6	37.7	49	9.4	82.4	140.7	75.4	44.3	103
5	-15.0	28.3	55.0	22.8	9.1	38.8	50	10.0	84.1	143.3	77.1	45.4	105
6	-14.4	29.1	56.4	23.7	9.7	39.8	55	12.8	92.6	156.6	106.0	51.2	115.
7	-13.9	30.0	57.9	24.5	10.2	40.9	60	15.6	101.6	170.7	116.2	57.4	126
8	-13.3	31.0	59.3	25.4	10.8	42.0	65	18.3	111.3	185.7	127.0	64.0	137.
9	-12.8	31.9	60.8	26.2	11.4	43.1	70	21.1	121.5	201.5	138.5	71.1	149
10	-12.2	32.8	62.3	27.1	12.0	44.3	75	23.9	132.2	218.2	150.6	78.6	161.
11	-11.7	33.8	63.9	28.0	12.6	45.4	80	26.7	143.7	235.9	163.5	86.7	175
12	-11.1	34.8	65.4	29.0	13.2	46.6	85	29.4	155.7	254.6	177.0	95.2	189
13	-10.6	35.8	67.0	29.9	13.8	47.8	90	32.2	168.4	274.3	191.3	104.3	204
14	-10.0	36.8	68.6	30.9	14.4	49.0	95	35.0	181.9	295.0	206.4	113.9	220
15	-9.4	37.8	70.2	31.8	15.1	50.2	100	37.8	196.0	316.9	222.3	124.1	236
16	-8.9	38.8	71.9	32.8	15.7	51.5	105	40.6	210.8	339.9	239.0	134.9	254
17	-8.3	39.9	73.5	33.8	16.4	52.7	110	43.3	226.4	364.1	256.5	146.3	272
18	-7.8	40.9	75.2	34.8	17.1	54.0	115	46.1	242.8	289.6	274.9	158.4	291
19	-7.2	42.0	77.0	35.9	17.7	55.3	120	48.9	260.0	416.4	294.2	171.1	312
20	-6.7	43.1	78.7	36.9	18.4	56.6	125	51.7	278.1	444.5	314.5	184.5	333
21	-6.1	44.2	80.5	38.0	19.2	57.9	130	54.4	297.0	474.0	335.7	198.7	355
22	-5.6	45.3	82.3	39.1	19.9	59.3	135	57.2	316.7	505.0	357.8	213.5	379.
23	-5.0	46.5	84.1	40.2	20.6	60.6	140	60.0	337.4	537.6	380.9	229.2	403
24	-4.4	47.6	85.9	41.3	21.4	62.0	145	62.8	359.1	571.7	405.1	245.6	429
25 26	-3.9 -3.3	48.8 50.0	87.8 89.7	42.4 43.6	22.1 22.9	63.4	150 155	65.6	381.7	607.6	430.3	262.8	456
26	-3.3	50.0	89.7	43.5	22.9	64.8	155	68.3	405.4	645.2	456.6	281.0	484

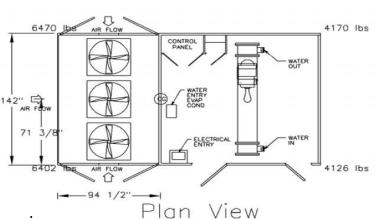
HFC-134a

125 Condensing
Temperature =
184.5 PSIG

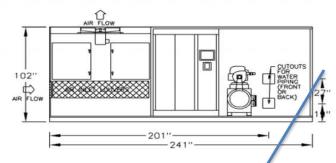
HFC-410a

125 Condensing
Temperature =

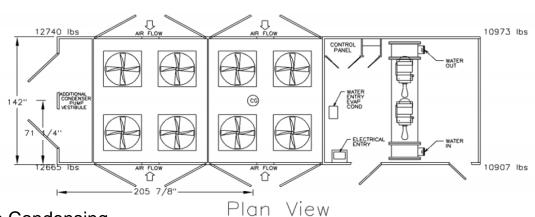
444.5 PSIG



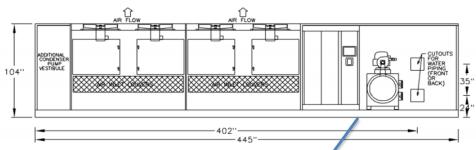
TurboCor Oil Free Magnetic Bearing Compressor



120 Ton Unit Ratings

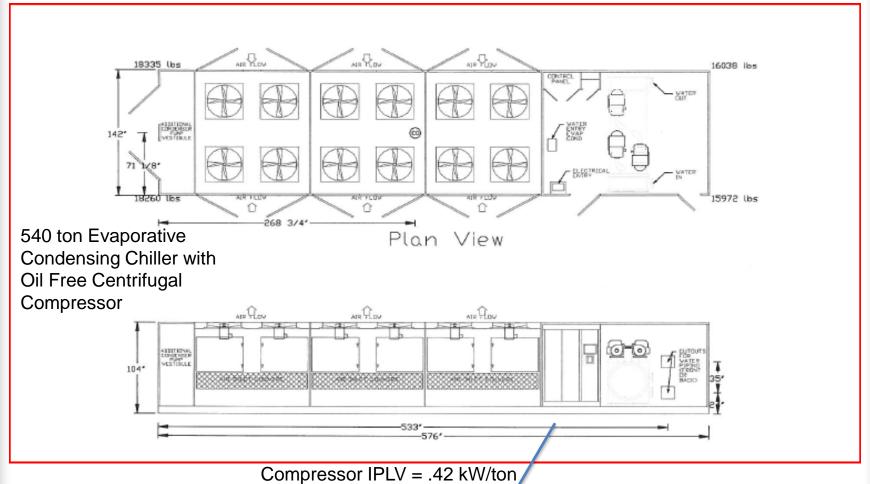


120 ton Evaporative Condensing Chiller with Oil Free Centrifugal Compressor

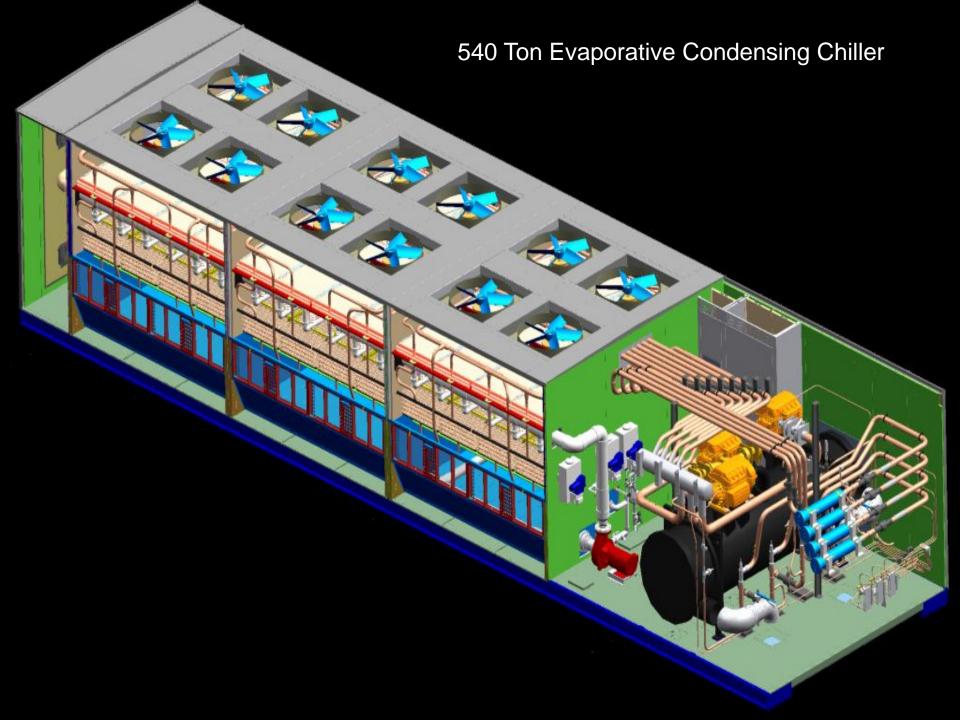


% Full Load x Comp Qty	Tons	Unit kW	Comp kW	Cond kW	Unit EER / kW/Ton	Comp kW/Ton	DB / WB	GPM	EWT	LWT
100% x 1	120.45	90.98	81.51	9.47	15.89 / 0.76	0.68	95.0 / 75.0	288.00	54.00	44.00
75% x 1	90.33	53.95	44.48	9.48	20.09 / 0.60	0.49	88.8 / 68.8	288.00	51.50	44.00
50% x 1	60.22	31.14	21.67	9.48	23.20 / 0.52	0.36	82.5 / 62.5	288.00	49.00	44.00
25% x 1	30.11	15.19	12.68	2.50	23.79 / 0.50	0.42	76.2 / 56.2	288.00	46.50	44.00

300 Ton Unit Ratings



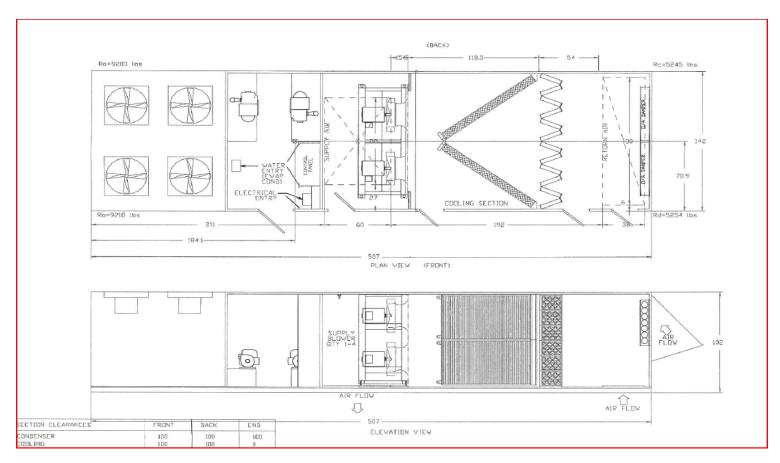
300 ton Evaporative Condensing Chiller with Oil Free Centrifugal Compressor


% Full Load x Comp Qty	Tons	Unit kW	Comp kW	Cond kW	Unit EER / kW/Ton	Comp kW/Ton	DB / WB	GPM	EWT	LWT
100% x 2	280.37	199.27	175.60	23.67	16.88 / 0.71	0.63	95.0 / 75.0	670.40	54.00	44.00
75% x 2	210.28	121.97	98.29	23.67	20.69 / 0.58	0.47	88.8 / 68.8	670.40	51.50	44.00
50% x 2	140.19	64.42	49.17	15.25	26.11 / 0.46	0.35	82.5 / 62.5	670.40	49.00	44.00
25% x 1	70.09	36.00	31.03	4.97	23.37 / 0.51	0.44	76.2 / 56.2	670.40	46.50	44.00

540 Ton Unit Ratings

Compressor IPLV = .42 kW/ton Unit IPLV = .55 kW/ton

% Full Load x Comp Qty	Tons	Unit kW	Comp kW	Cond kW	Unit EER / kW/Ton	Comp kW/Ton	DB / WB	GPM	EWT	LWT
100% x 3	540.00	378.23	335.76	42.47	17.13 / 0.70	0.62	95.0 / 75.0	1296.00	54.00	44.00
75% x 3	405.00	241.59	199.12	42.47	20.12 / 0.60	0.49	88.8 / 68.8	1296.00	51.50	44.00
50% x 3	270.00	141.50	99.02	42.47	22.90 / 0.52	0.37	82.5 / 62.5	1296.00	49.00	44.00
25% x 2	135.00	66.44	51.96	14.49	24.38 / 0.49	0.38	76.2 / 56.2	1296.00	46.50	44.00



Aaon Evaporative Condensing Chiller

Aaon Rooftops w/ Oil Free Magnetic Bearing Centrifugal Compressors - from 90-300 Tons

Evaporative Condensing

Water Treatment similar to...but...however...

Water Treatment

- As recirculated water evaporates in an evaporative condenser, the dissolved solids in the makeup water continually increase as more water is added. Continued concentration of these dissolved solids can lead to scaling and/or corrosion problems.
- In addition, airborne impurities and biological contaminants are often introduced into recirculated water. If these impurities are not controlled, they can cause sludge or biological fouling. Simple blowdown (discharging a small portion of the recirculating water to a drain) may be adequate to control scale and corrosion on sites with good-quality makeup water, but it does not control biological contaminants such as *Legionella*.

Langelier Saturation Index (LSI)

 The potential for scaling is calculated using the Langelier Saturation Index (LSI). This is a calculated parameter to predict the calcium carbonate stability of water using pH as the main variable.

•	Langelier Index	Description	General Recommendation	Risk
•	-5	Severe Corrosion	Treatment Essential	Plumbing Annihilation
•	-4	Severe Corrosion	Treatment Essential	Plumbing Annihilation
•	-3	Moderate Corrosion	Treatment Recommended	Long-term Pipe Death
•	-2	Moderate Corrosion	Treatment Recommended	Possible Trouble
•	-1	Milder Corrosion	Treatment May Be Needed	The Long Finger ?
•	-0.5	Milder Corrosion	Treatment May Not Be Req.	Hope All Goes Well
•	-0.3	None Mild Corrosion	Probably No Treatment	Looking Good
•	0	Near Balanced	No Treatment	Just right
•	0.3	Some Faint Coating	Probably No Treatment	Looking Good
•	0.5	Some Mild Coating	Treatment May Not Be Needed	Hope All Goes Well
•	1	Mild Scale Coating	Treatment May Be Needed	The Long Finger?
•	2	Moderate Coating	Treatment May Be Needed	Possible Trouble
•	3	Moderate Coating	Treatment Advisable	Long-term Pipe Death
•	4	High Scale Coating	Treatment Very Advisable	Plumbing Annihilation

Traditional Evaporative Condenser

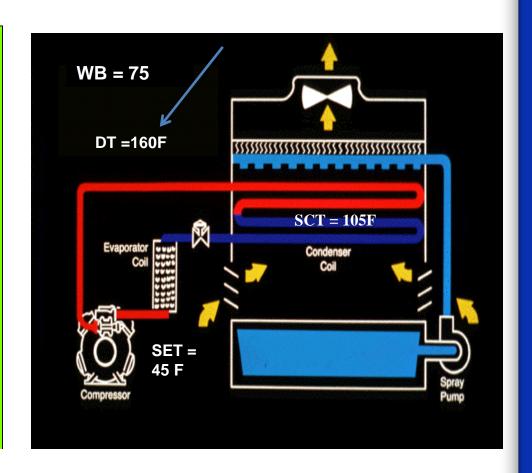
Langelier Saturation Calculator

Langelier Saturation Index Calculator

T = 160.0 [F] 71.1 [C]

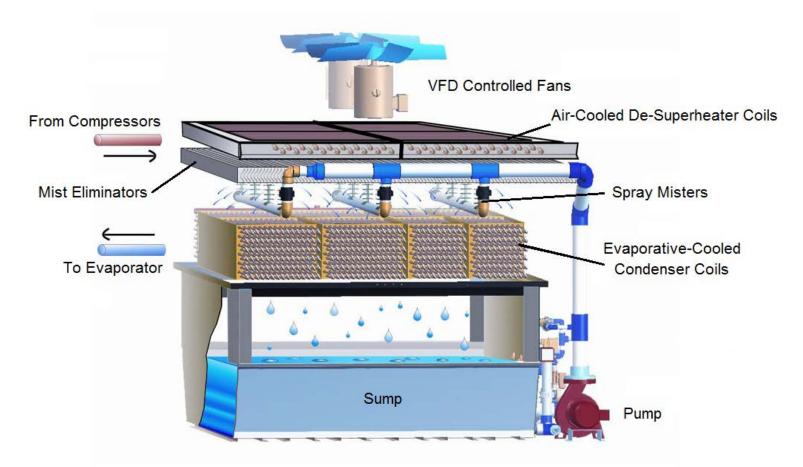
pH = 7.100

TDS = 660.0 [mg/L]


Calcium = 392.0 [mg/L as CaCO₃]

Alkalinity = 76.0 [mg/L as CaCO₃]

Conductivity_{Approximate} = 1,453 [micro-mho/cm]


LSI = 0.4236

Definite Scale Potential

Evaporative Condenser w/ De-Superheater

Evaporative Condenser w/

De-Superheater

Langelier Saturation Index Calculator

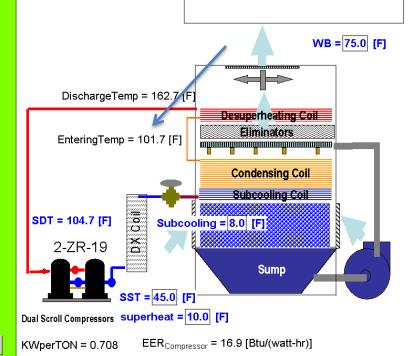
T = 101.7 [F] 38.7 [C]

pH = 7.100

TDS = 660.0 [mg/L]

Calcium = 392.0 [mg/L as CaCO₃]

Alkalinity = 76.0 [mg/L as CaCO₃]


Conductivity_{Approximate} = 1,453 [micro-mho/cm]

LSI = -0.1396

Border Line Scale Potential

LSI Calculator

LSI Help


Evaporative Condenser Cycle Analysis

DesuperheatingHeatRejection = 106,275 [Btu/hr]

CondensingHeatRejection = 383,002 [Btu/hr] WaterEvaporationRate = 364.8 [lb/hr]

 $THR_{total} = 489,277 [Btu/hr]$

WaterSavings% = 21.7 [%]

Evaporative Condenser w/ De-Superheater Benefits

- 22-100% Less Water usage
- 22-100% Less Chemical usage
- Lower energy consumption due to reduced fouling and more efficient heat transfer
- Reduced tendency to form scale in the wetted coil section
- Longer condenser fan motor life due to reduced relative humidity of ambient air
- Unit can run dry

At 70 DB the system will operate at ~60% capacity....DRY

Commercial

Aaon - We Don't Lose

- Outside Air
- DOAS
- Tight Temperature, Humidity & Building Pressure Control
 - Indoor or Rooftop
 - Air or Water Cooled
 - Any Type of Heat
 - With or Without Heat Recovery

Aaon – We are <u>Very</u> Competitive

- VAV Packaged Rooftops
 - Single Zone VAV & Standard VAV
- Rooftop Air Handling Units
- VAV Split DX Systems
- Anything Water/Geo Cooled
- Compact Ahu's up to 10,000 CFM
- Chiller & Boiler Mechanical Rooms

Aaon – We are <u>Very</u> Competitive

- High Efficiency LEED Projects
- Rooftops Designed for Life Expectancy's of 30-40 Years
- Ease of Service
- Life Cycle Cost

Aaon What We Are <u>NOT</u> Very Good At

- Cheap CAV Rooftops below 20 Tons
- Cheap Modular Indoor Air Handling Units above 25,000 CFM
- Cheap Air Cooled Chillers Above 150 Tons

WaterFurnace WSHP's

- Versatec Base High Efficient
 - Up to 17.0 EER GLHP, 14.7 WLHP
- Versatec Ultra Higher Efficient
 - Up to 18.5 EER GLHP, 15.7 WLHP
- Envision Flat Spec
 - Up to 30 EER GLHP, 21.6 WLHP
- Quick Ship Replacement Units
- Modular Chillers Up to 300+ Tons
 - 4 or 6 Pipe

Samsung

- Heat Recovery Air Cooled
 - Flash Injection for 100% Heating Capacity at -13F
- Heat Recovery Geo/Water Cooled
- Heat Pump Air Cooled
- Mini-Split & Multi-Split Systems
- AHU Kits

Seasons 4

- Fit the Existing Curb
 - Rooftop Multizone
 - Packaged Rooftops
- Custom DX Packages
- Clean Room Systems

Trox

- Active & Passive Chilled Beams
- Displacement Chilled Beams
- Underfloor Air Distribution

Energy Labs

- Custom Air Handling Systems
- Custom DX Packaged Systems
- Custom Data Center Hybrid Cooling Systems

Ebtron

- Thermal Dispersion Air Flow Measurement
- People Counters
 - Currently Available for Single Door Applications

Misc. Mfg's

- MeeFog Humidification
- Suburban Gas Fired PTAC's & Gas Fired Indoor Packaged Units
- Toxalert Gas Detection
- BioClimatic Bi-Polar Air Cleaning
- Whalen Stacking Fan Coils & WSHP's

Thank You

Jerry Cohen
President
Jacco & Assoc.