

Modular Chilled Water & Heat Pump Systems

Greg Drensky Vice President

• Established 1968

- Hudson, Ohio
- Columbus, Ohio
- Toledo, Ohio

- Focused on the Engineered Environment
- Systems Knowledgeable
 -HVAC Systems
 Service & Maintenance
 - -Service & Maintenance
 - -Parts

Purpose Statement

The purpose of our Company is to solve our customers problems, in the most economical way, at all times optimizing the owning experience.

- Operations
 - –Brenda Homjak
 - -Mike Spangler
 - -Chad Russell
 - -Mike Mueller
- Contractor Owning Experience
 - Dan DuignanRick Baker
- Engineering Owning Experience —Greg Drensky —Jerry Cohen
- Owning Experience –Beth Plazak –Jeff Watson

- •30 Minute Pledge
 - Design
 - Questions
 - Problems
 - Answers

Upcoming Seminars:

•June 13th: Best Practices For DX Piping

•September 12th: Applying Adiabatic and Steam Humidification Systems

•December 12th: Applying Low Dewpoint OA Systems Using DX and Desiccant Technology

Why Use Modular Chillers:

- Space
 - System Replacement
 - Additional Tenant Space
- Sound
- Redundancy
- Future Expansion
- Simultaneous Heating & Cooling
- Rigging
- Accessibility

caring for the environment

SAMSUNG

Natural Gas Fired

caring for the environment

Why Use Natural Gas Modular Chillers:

- Consistent Excessive Electrical Power
- Peak Demands
- Single Phase Only Available
- Local Natural Gas Wells
- Low Environmental Impact
- Emergency Power Backup

Founded in 1956

Corporate Headquarters: Italy 300,000 sq.ft

caring for the environment

Sales & Service location in US: Evansville, IN – USA

Absorption Products History

Drastic Reduction in Electrical Power Consumption

- Reduces buildings' HVAC systems' electrical demand by 80% compared to electric cooling & heat pumps
- Single Phase Power reducing electrical infrastructure and associated costs.
- No additional building upgrades required.
- Eliminate or reduce electric demand charges
- Smaller generator requirements for applications requiring off grid power or emergency cooling

Environmentally Friendly

- No CFC's, HFC's or HCFC's which deplete the Earth's ozone and contribute to Green House Gas elimination.
- Ozone depletion potential (ODP) = 0
- Global warming potential (GWP) = 0
- Very high efficiency recovering thermal energy from the ambient (Heat Pumps)
- Low Nox emissions premixed burner
- Smaller carbon footprint when compared to generating electricity to power traditional electric.

Reliability / Durability

- Long Life
- No compressors or engines
- No mechanical wear and tear
- Only 3 moving parts
- Completely sealed circuit, with no need of periodic refilling of refrigerant fluid
- No refrigerant leaking
- Low maintenance required

Modularity / Redundancy

- Wide range of Systems available
- Redundancy with modular design
- Multiple Links available
- Application Flexibility
- Staging capability adapts to changing load conditions
- Only use utilities required to meet building loads

RICHIESTA DI POTENZA

Lifestyle

- Heating efficiency up to 129%
- Operational cost savings
- Ultra-low noise level
- Wide range of ambient operating conditions (-20°F to 131°F depending on model)
- Water temperatures from 14°F to 185°F

Electric Heat Pump

Electric heat pump: efficiency-primary energy ratio.

Gas Fired Product Line

Each module is capable of singular / independent operation – Providing Chilled and/or Hot water for various application types

•More Commonly, These units are installed as a modular system utilizing multiple units – Allowing operation at larger capacities as well as modularity and redundancy

•The modular configuration allows system scaling to meet application capacity as necessary with no down time and only using the energy required at any given period.

Factory built Modular "Links"

- Provided with single point water, gas, and electrical connections
- Up to 6 Modules per "Link"
- Customizable/ built to order
- Available in 2, 4 or 6-Pipe configurations
- Mix and Match Module types to provide a complete system capable of providing Heating, Cooling, DHW, Reheat and more.....
- Manifold multiple links for even larger capacities

Application

Installation

Necessary / Recommended Hydronic components:

- •Anti-Vibration / Flexible Connectors
- •Pressure Guage / PT Fittings
- •Flow Control Valve / Curcuit Setter
- Isolation / Shut Off Valves Full Flow
- •Water Strainer / Filter

- •Water Pump(s)
- •Air Seporator / Air Bleeds
- •Expansion Tank
- •Buffer Tank
- •Load By-Pass Valves Not Shown
- •45 psi High Pressure relief valve to be installed on hot water systems not to exceed 45 psi

Natural Gas Fired Chillers

ANNUAL LOAD PROFILE Based On 1200 Cooling Hours

Typical Facility Load Profile Cooling Vs. Base Load

New Electric Load Profile as a result of Gas Air Conditioning

Cooling Applications

- Comfort Cooling
- Chilled Beams
- Fan Coils
- Air Handlers
- Dehumidification
- Controlled Temperature Rooms
- Equipment Cooling
- Process Cooling
- Medium Temperature Refrigeration (LB Unit)
- Free Supplemental Domestic Hot Water (HR Unit)
- Low Ambient Temperature Operation Down to 10.4°F (TK Unit)
- High Ambient Temperature Operation Up to 131°F (HT Unit)

Public Administration Light Commercial Offices Hotels Industries

ACF60 Absorption Chiller Series

- ST 5 Tons. For installation in climates with design temperatures less than 104° F. Chilled water supply temperature down to 38° F.
- TK 5 Tons. For Industrial & Commercial applications requiring heavy use on a year round basis. Operates down to 10.4 ° F ambient.
- HT 5 Tons. For installation in climates with design temperatures over 104° F. Chilled water supply temperature down to 38° F.
- LB 4 Tons. For installations requiring chilled water temperatures from 37° F to 14° F (4 Tons @ 29° F).
- HR 5 Tons with <u>Heat Recovery</u>. For any application requiring the use of free supplemental hot water during chiller operation. Chilled water supply temperature down to 38° F and recovered heat capacity of 85,000 Btu/h with hot water up to 180° F

Absorption chiller with <u>Heat Recovery</u> ACF60 - HR

Performance

During chiller operation (cooling) 86,400 Btu/hr of free hot water can be recovered (hot water outlet temperature up to 176°F).

Main applications

Hydronic Air Conditioning with Heat Recovery for domestic hot water use or post-heating applications (hotels, restaurants, laundries).

Application (ACF60-HR)

Natural Gas Fired Heat Pumps
GAS ABSORPTION HEAT PUMPS AND RENEWABLE ENERGIES ROBUR GAHP

GAHP units put together all the advantages of the two most common heating technologies

<u>Robur Heat Pump vs. Condensing Boiler</u>

<u>Robur Heat Pump vs. Electric Heat Pump</u>

Heating Applications

- **Comfort Heating**
- **Radiant Floor Heating**
- Fan Coils
- **Air Handlers**
- Supplemental Domestic Hot Water
- **Equipment Heating**
- **Process Heating** ۲
- Supplement Chiller & Boiler Systems

GAHP Series AR, A, W, WLB

33.5"W x 48.5"L x 51"H

Heat Pump Modules

- Air-Water & Water-Water versions available Designed for operation in ambient temperatures between -20°F to 120°F (depending on Model)
- Provides Chilled/Hot water temps from 38°F up to 140°F
- Suitable for Commercial, Industrial and Residential Applications
- Models Designed for Comfort and/or Process cooling applications, Comfort Heating, DHW (depending on model type)
- Heating COP range from .85 to 1.46 Nom. = 1.29 (range due to ambient temperatures)
- Ideal for supplementing boiler systems to raise overall building heating efficiency well in excess of 100%
- Available on factory Modular Links up to 6 units
- Each module contains microprocessor control w/ LED readout, internal flow switch, gas train safeties, various temperature sensors for unit monitoring and much more.....

GAHP-W

THERMODYNAMIC OPERATING CYCLE

Natural Gas Fired Modular Links

Modular Link Series

Up to 6 Standard air cooled chiller / Heat Pump modules or 4 Chiller-Heaters Modules assembled on a rail set with single point water, gas, and electrical connections

Unmatched modularity and redundancy provided with each modular link configuration – only use the utilities required to meet building loads and never be with out your heating or cooling with the redundancy already built in

Any air cooled chiller, heat pump or chiller-heater module can be assembled in various configurations to provide a single system capable of providing Cooling, Heating, DHW and more

All modules are factory assembled, piped, and wired with single point gas and water connections available at each end of system

Operates on single phase 208 or 230 volt power supply, regardless of system size

If optional Robur DDC control is chosen, units are pre-wired for DDC operation

Links are built to order and are customizable – chose piping material, water line components, mix and match module types to best fit application

ORDBUR

Natural Gas Fired Chiller – Heaters Standalone Heaters

The <u>AYF60-119 Series</u> consists of an absorption chiller combined with an 85% outdoor boiler to provide a single unit capable of producing both chilled and/or hot water for HVAC applications.

ROBUR

AYF60-119 Series Chiller-Heaters

- Available in 2-pipe and 4-pipe configurations for design flexibility
- The Robur chillers coupled with the Robur copper fin tube boiler with AFUE rating of 85%
- Available with ST, HT, TK & LB chillers for even more application flexibility

Modular CHILLER/HEATER-LINK SERIES

RTYF SERIES – 8 to 20 tons cooling with up to 443,600 Btu/h heat

Available with ST, HT, TK & LB chillers

Factory Assembled, Piped & Wired - 2 or 4-pipe versions

Single Point Gas, Water & Electrical Connections

Solid State Micro-Processor Controls

Variable Speed Condenser Fans

Standard 24 Volt Controls

Single Phase 208/230 Volt Power Connection

Optional DDC Controller

Stand Alone Boiler Module

- 85% Outdoor Boiler
- Copper Fin Tube heat exchanger
- Produces hot water up to 185°F at a capacity of 110,900 Btu/h
- Will operate down to an ambient temperature of -20°F

Heating Only Systems

Natural Gas Fired Integration

Robur DDC Control

Direct Digital Contol (DDC) – Bus Wire

- Manages up to 16 Clg. & Htg.Modules on common hydronic loop.
- Provides up to 10 Stages.
- Equalizes run time of Robur Modules.
- Can maintain a loop temperature without an external call or condition.
- Can operate as a Summer/Winter switch.
- Logs and displays fault events.
- Modbus Communication Capability More to come.

For indoor installation or weather tight enclosure in temperatures from 32°F to 122°F

& Can

DDC Control Advantages

- Equalizes run times across installed modules
- Records module history Error codes, Run times, Etc...
- Allows managment of up to 96 modules in Multi DDC Plants– 32 per DDC
- Allows remote control of modules from building interior
- Allows additional system enabling (auto call for heat or cool, maintain plant temp, time and temp operation, etc..)
- Allows communication with BMS control through modbus interface
- Allows outdoor reset control for heating and cooling applications
- Maximizes system efficiency by consolidating individual module information
- Allows greater control of plant temperature swings with advanced algorithym
- Allows control of external boiler/ chiller function & DHW control with use of RB200

Natural Gas Fired Projects & Applications

Department of Sanitation

NY, NY (90) ACF60 TK 450T – Comfort Cooling

JFK Elementary School

Brewster, NY (30) GAHPAR 150T – Comfort Cooling 3.6 MMBH – Comfort Heating

Park Forest Apartments

Jackson, MI (18) GAHP AR (4) ACF60 HR 2.2 MMBH- Comfort Heating 110T – Comfort Cooling 348 MBH – Free Heat Recovery

Public Library Chinatown

Chicago, IL (1) RTAR240-480 20T – Redundant Comfort Cooling 481 MBH – Primary Comfort Heating

D'Youville College Science Building Buffalo, NY (5) RTCF360-TK 150T – Conditioning Fresh Air Intake

New York University Tisch School of the Arts NY, NY (10) ACF60 50T- Equipment Cooling

Golden Town Apple Thornbury, ON (8) ACF60 TK 40T – Medium Temperature Refrigeration

Montreal (3) GAHP-W LB 358.2 MBH – Comfort Heating

15.2T – Comfort Cooling

Grace Church

New York (15) ACF60 75T- Comfort Cooling

Residence – MA (1) RTCF180 15T – Comfort Cooling

Residence- NJ (5) ACF60 25T - Comfort Cooling

Air Cooled Modular Chiller & Heat Pumps

Why Use Air Cooled Modular Chillers:

- Reduced Sound
- Complement Geo System
- Reduced Footprint
- Reduced Weight (Existing Buildings)
- Reduced Rigging Costs (Fits in Freight Elevator)

DVM Chiller Technical Overvi

Module 1

Max 8

15 ton

Group

10 ton

Max

Module 2

Max 8

240

ton

Basic

- DVM Chiller is a heat pump that can provide hot or cold water
- Nominal 10 and 15 ton capacities
- Up to 16 can be grouped and controlled as a system using the DVM Chiller module controller
- Dedicated DVM Pro design software

DVM Chiller Technical Overview Technical Specifications

208/230V

460V

Model Number			AG010KSVAFH/A	AG015KSVAFH/	AG010KSVAJH/A	AG015KSVAJH/A
			A	AA	А	А
Power Supply		Ø, V, Hz	3, 208-230 , 60	3, 208-230 , 60	3, 460 , 60	3, 460 , 60
Nominal Capacity		Tons	10	15	10	15
Efficiency	Cooling EER		11.20	10.10	11.20	10.10
	IPLV		20.5	18.8	20.5	18.8
Water circuit	Heat Exchanger Type		Brazing Plate	Brazing Plate	Brazing Plate	Brazing Plate
	Connection Type		50A Cut Groove	50A Cut Groove	50A Cut Groove	50A Cut Groove
Operating Water Temp. Range	Cooling	°F	41 - 77	41 - 77	41 - 77	41 - 77
	Cooling (If using brine)	°F	14 - 77	14 - 77	14 - 77	14 - 77
	Heating	°F	77 - 131	77 - 131	77 - 131	77 - 131
Operating Amb. Temp. Range	Cooling	°F	5 - 118	5 - 118	5 - 118	5 - 118
	Heating	°F	-13 - 109	-13 - 109	-13 - 109	-13 - 109

* Certified efficiency data in accordance with AHRI Standard 550/590. Efficiency data is for single modules only, not combined DVM Chillers

* Specification may be changed without further notification.

Easy Installation Small Space

DVM Chiller				
	Modular Chiller 15 ton	Company A 20 ton	Conventional Chiller Company B 25 ton	Company C 57 ton
Install Area*	14.75 ft ²	24.8 ft ²	39.8 ft ²	65.6 ft ²
Ratio	100 %	168 %	216 %	156 %
Product Volume (Unit)	82.28 ft ³	137.0 ft ³	280,8 ft ³	480,6 ft ³
Ratio	100 %	167 %	273 %	205 %

*Including Service Area Based on 560 kW, 8 units)

Maximizing Utilization of Rooftop Area with Minimum amount of Install Area

DVM Chiller Water Pipe Installation

AMSUNG

Flexible Joint before the DVM CHILLER must be installed as figure shown.

POD 1 World-class Energy Efficiency

Secure Reliability and Energy Efficiency with Samsung inverter scroll compressor

Confidential

SAMSUNG

DVM Chiller Technical Overview Features

 75% of Heating Performance at -13°F with Flash Injection Technology

DVM Chiller Technical Overview Features

04

03 Cold Water Production

- Thermal Ice Storage and High Temperature Difference HVAC
 - High Temp. Difference
 HVAC

(max △ 18°F, 59~41 °F) • Thermal Ice Storage

HVAC (min 14 °F, Brine Temperature)

Prevents Freezing and Pipe Bursts

- Built-in Differential Pressure and Temperature Sensor
 - Senses water flow volume
 - Prevents PHE from freezing (based on refrigerant and water temperature, and water flow)

DVM Chiller Technical Overview DVM Chiller Concept

DVM Chiller Technical Overview Wide Operation Range

Can be used for various applications including, Offices, Retail, Hotels, Hospitals, Education, an

DVM Chiller Technical Overview Defrost Operation

Sequential and intelligent defrost operation

- Advanced intelligent defrost logic to significantly reduce defrost cycle frequency by monitoring air resistance across the condenser coil and coil temperature during heating operation to determine defrost operation initiation to prevent unnecessary defrost cycles.
- Defrost operation is activated when both coil temperature and the air resistance of DX heat exchanger is decreased to a certain level (based on fan data)
- <30% in defrost at a time</p>

DVM Chiller Technical Overview Three Different Operation Patterns for Various Requirements

1 Rotational Operation / 2 Demand Operation / 3 High Efficiency Operation

DVM Chiller Technical Overview Operation Patterns

1) Standard Control

- All modules start operating at the same time, and each module operates in the operation pattern that was set during system commissioning
- · The default for each module is Standard control.
- Applications: Standard control is suited for applications that always have a high cooling and heating load factor.
- When a group is configured to operate in Standard Control, individual modules can be configured to operate in Standard, Efficiency, or Rotation control patterns.

DVM Chiller Technical Overview

1) Standard Control Continued

- Control standards of Water Outlet Temperature: Individual capacity control based on the Water Outlet Sensor in each unit
- Capacity control: When operating, every unit in the modules operate and implements capacity control individually.
- Control Target: Each Unit's Water Outlet Temperature
 Start
 OPERATION

			-	
All units will start at the same time				

Each unit can be control and performs capacity of the compressor based on the its water outlet temperature capacity control Thermo-Off

Close to set point

set temperature will be the Thermo-Off (idie).

Starting capacity decision compared to DVM S / DVM Hydro heat exchangers:

- There is no capacity code of indoor unit (hydro section of DVM Chiller) like there is for DVM S indoor units. Since there is only 1
 "indoor unit", no capacity code is necessary. The unit simply operates trying to maintain water set temperature.
- · Capacity corresponding to whole outdoor units operation
- Capacity control is similar to DVM S capacity control where each unit implements compressor capacity control.

DVM Chiller Technical Overview

2) Rotation Control

- The module with the highest priority starts operating first. When the module reaches full load, a module with the following
 priority will start operating.
- When the module with the lowest priority operates at the minimum capacity and the water outlet temperature reaches close to the set temperature, the compressors of the module stop.
- DVM chiller's water outlet temperature is controlled according to the water outlet temperature average value of all
 operating units in a module. If the system is configured to use an external water temperature sensor, it controls the water
 outlet temperature according to the external sensor's value.
- Modules in a group operate in standard control

Applications: Rotation control is best suited for applications that have lower loads while starting a DVM chiller and has suffluctuation in momentary load.

DVM Chiller Technical Overview Operation Patterns

2) Rotation Control Continued

- Operates only one unit (module) that has the highest priority, and when the unit (module) reaches full load, another unit (module) that has
 the following priority will operate.
- When the water outlet temperature reaches the set temperature, it will stop the unit with the lowest priority.
- Control target: average water outlet temperature of operational (not idle) DVM Chiller units

DVM Chiller Technical Overview Operation Patterns

3) Efficiency Control

- Inverter compressors are the least efficient at low speeds and really high speeds. They are the most
 efficient in mid-range frequencies (50 80 Hz for DVM S and DVM Chiller)
- While in Efficiency Control Pattern, only one unit with the highest priority operates (1). When that unit reaches the most efficient frequency (compressor speed), another unit with the following priority will operate (2).
- When all units reach efficient operating conditions, each unit then operates at capacities between the most efficient operating condition and the maximum capacity condition.
- When all units reach efficient operating conditions and the water outlet temperature reaches close to the set temperature, the unit with the lowest priority decrease compressor operating capacity (3).

DVM Chiller Technical Overview Operation Patterns 3) Efficiency Control Continued

- When all units operate with the optimum efficiency, they control the pressure of their compressors in a range between higher than efficient Hz and lower than full load Hz separately.
- DVM chiller's water outlet temperature is controlled according to the water outlet temperature average value of all operating units in a module. However, if enable external water temperature sensing (field provided) during system setup, it controls the water outlet temperature according to a temperature value from the sensor.
- Applications: Efficiency control is suited for applications that have both an operating section with the low load and a focused operating time.

DVM Chiller Technical Overview Operation Patterns

3) Efficiency Control Continued

- Operates only one unit that has the highest priority, and if the unit operates the optimum efficiency, the other unit that has the following priority will operate.
- When the RPM of operating units are below 50Hz, it will stop one of units with the lowest priority.

DVM Chiller Technical Overview Water Law

- Optional energy saving option to automatically adjust leaving water set temperature based on ambient temperature or room temperature.
- Water Law can configured to change water set temperature based on outdoor temperature or indoor temperature.
- As indoor or outdoor temperature changes, the water set temperature will automatically adjust.
- If configured to monitor indoor temperature, a PT100 temperature sensor must be installed (field provided) or a signal from a BMS must be connected to provide room temperature data. By Outside Temperature

DVM Chiller Integrated Control System

DVM Chiller provides the integrated control system same as the VRF

SNET3

S-NET 3 is a complex management program that controls and monitors a complete air conditioner network system. The S-NET series provides flexible and complete control for a variety of applications.

- Fully integrated PC management software
- For large site. (Ex. University)

Data Management System 2.5

Easy Control Monitoring

Individual/Group control and monitoring up to 256 indoor units.

On/off, operation mode, temperature setting, airflow direction and fan speed.

Wireless/wired remote control restriction.

Error history query based on

Schedule Control

- Up to 256 schedule settings.
- Weekly, Daily or 1-Day schedule control.
- Exception date setting.

Smart Central Management

- Control & monitoring
- Wireless/wired remote control restriction
- Temperature limit setting

Data Management System 2.5

Power Distribution System

Error Management

User Defined Control Logic

- Power distribution to up to 256 indoor units
- Data query for watt-hour, use time and use ratio
- File save in Microsoft
 Excel format
- 1-year power distribution data storage
- Current actual power consumption monitoring
- Current-type electricity meter support (CT ratio input)

ACCO

- Easy service and management with operation and error history
- Recorded history makes it convenient to analyze air-conditioner operation
 and perform unit
- maintenance

•	User can edit control
	logic with
	arithmetic/conditional
	operators and
	parameters

 Efficient energy saving realization for various

> > Cooling mode

/ ERV / AHU

Parameters

Temperature, Powe

ode, External signal(DI)

Building Management System

BACnet Gateway

- Interface for BACnet
 management system
- Central management of up to 256 indoor units
- Combination use of S-NET3
- Included DMS2.5 function
- Communication : 485 to BACnet
- Upper physical layer : Ethernet

LonWorks Gateway

- Interface for Lon-Connection to LonWorks management system
- Central management of up to 128 indoor units
- Combination use of S-NET3
- Included DMS2.5 function
- Communication : 485 to LonWorks
- Upper physical layer : FTT-10A

BMS Control / Monitoring Functions

BMS Control Function

- On/Off control
- Temperature setting
- Operation mode
- Fan speed/direction
- Filter alarm reset
- User control restriction
- Mode lock & set temp limit
- Emergency stop

Monitoring Function

- On/Off control
- Set/Room Temperature
- Operation mode
- Fan speed/direction
- Filter alarm
- User control restriction
- Mode lock & set temp limit
- Power Distribution
- Error information

Centralized Controller

Multi Wi-Fi Kit

Easy Interface

Individual Control System Wired Remote Controller

MWR-WE10N (Multi Function)

MWR-SH00N (Simplified)

MWR-SH10N (New)

- Built-in room temp. sensor
- Clear & Bright LCD Screen
- Motion detection sensor hardware on/off (mini 4-way)
- Control, monitoring, & error display
- Sleep & Silent Mode
- Weekly Schedule

- Internal temp. sensor
- Backlight
- Built-in infrared receiver to allow control of indoor unit wirelessly
- All button lock
- Skip specified mode on wired controller
- Function and Operation indication

Intuitive User Interface

Premium Design

DVM Chiller Applications

- K-12 Education
- Colleges/Universities
- Dorms
- Condos/Apartments
- Assisted Living
- Hospitals/Satellite Hospitals
- Hotels/Motels
- Offices

Why Use Water Cooled Modular Chillers:

- Efficiency of Water Cooled
- Reduced Sound
- Units Placed Indoors
- Reduced Rigging Costs (Fits in Freight Elevator)

MODULAR DUAL SCROLL CHILLER

Commercial Solutions

MODULAR DUAL SCROLL WITH PIPE RACK

- New Design
- Models 20-80 ton
- R410A
- Heat Recovery or Reversing versions
- Pipe Rack option
 - 4 Reversing
 - 4 Standard
 - 6 Standard
 - 6 Dedicated

Commercial Solutions

SEVEN SCROLL MODELS 20 TO 80 TON

MODULAR SCROLL CHILLER FEATURES

- Capacities of 20, 30, 40, 50, 60, 70, and 80.
- Voltages of 208-230/60/3, 460/60/3, or 575/60/3
- Oversized BPHX with low pressure drop
- True dual circuit BPHX for improved part load efficiency
- HydroLink/Aurora Controls featuring the field proven Aurora compressor management and the powerful NiagaraAX based HydroLink system controller

TYPICAL REVERSE RETURN APPLICATION (RECOMMENDED)

DIRECT RETURN APPLICATION (< 4 MODULES)

MODULAR CHILLER DIMENSIONS

Commercial Solutions

THE OTHER MODULARS? Once in place most modular chillers are difficult to service.

THE TRUE MODULAR CONCEPT

We have the Solution!

- 1. Fork truck pockets in front to remove from within bank
- 2. Hinged low Voltage box allows better service access.
- 3. Remove control box and top panels and service from front or top.
- 4. Chiller can be isolated and removed from pipe rack.

UNIT SERVICEABILITY IN A BANK: THE REMOVABLE CONTROL ASSEMBLY

Sequence of Disassembly:

- 1. Remove power supply
- 2. Remove Top Panel
- 3. Remove Frond Doors
- 4. Disconnect wire harness plugs and communication wires.
- 5. Completely remove control panel

UNIT SERVICEABILITY IN A BANK: BENEFITS

- The serviceability of the compressors, pressure sensors, unit wiring is possible without detaching the units.
- The new orientation of the compressors provide quick and easy access to the compressor power module, pressure switches and pressure transducers.
- The hinged control box provides for easy access to the filter driers and txv's.

Control Box Features

Control box is . removable from the front to provide access in case of service part replacement

Low voltage panel is hinged to provide easy access to refrigerant service ports

HEADER PIPE RACK

Commercial Solutions

HEADER PIPE RACK FEATURES

- Four pipe Rack Styles 4 Reversing, 4 standard, & 6 dedicated source, and 6 standard.
- Pipe Sizing of 4", 5", 6"
- Patented 3 way valve design
- Fork Pockets/Slide out frame
- Serviceable 3-way valves
- Global sensors relocated to bypass assembly
- Plug-n-play wiring for sensors
- Isolation valves between chiller

HEADER PIPE RACK DIMENSIONS

SEVEN MODES OF PIPE RACK OPERATION

FULL GRAPHIC DISPLAY OF PIPE RACK OPERATION

TEMPERATURE & BYPASS HEADERS

HYDROLINK / AURORA CONTROLS

Commercial Solutions

HYDROLINK / AURORA CONTROLS UPDATE

- The HydroLink (NiagaraAX) Controller will provides supervisoy capability.
- The Aurora provides compressor and heat exchanger management.

AXB

HydroLink

HYDROLINK/AURORA CONTROL

CONTROL FEATURES

- Safeties: HP, LP, three levels of freeze protection and water temp alarms.
- Energy Monitoring Amps and Watts for each compressor on every unit as standard.
- Refrigerant Monitoring Suction and Liquid Line Temps, Suction and Discharge pressures, Superheat and Subcooling on each circuit.
- Performance Monitoring entering and leaving water temperature and flow rate are measured with capacity calculation.

CONTROLS FOR THE PIPE RACK

- Onboard Pipe Rack Control Optional
 - Supports 4 Standard, 4 Reversing 6 standard and 6 dedicated types
 - 8 Mode operation
 - Local or Global temperature Sensing
 - 3-way valve control

Commercial Solutions

HYDROLINK WIRELESS CAPABILITY

All units are WiFi capable for remote viewing on laptop, tablet or even smart phone.

FRONT PANEL

CONTROL SCREENS

Commercial Solutions

HEADER RACK SCREEN

CHILLER SCREEN

Header Rack Chiller Circuit A Circuit B Overview Settings Diagnostics
Chiller#1
Model **360R4AEBNNSSE
Serial 0123456789

System

Normal
Cool Stage 2
A+B
Cool

Control

Method	Setpoint
Input	Remote Temp
Setpoint (°F)	50.0
Control Temp	52.4

Source Fluid

Leaving (°F)	60.7
Entering (°F)	42.0
Flow (gpm)	N/A
HE/HR (MBTU)	N/A

Load Fluid	
Leaving (°F)	39.0
Entering (°F)	62.1
Flow (gpm)	N/A
Capacity (MBTU)	N/A

CIRCUIT A & B SCREEN

SETTINGS SCREEN

I	Header Rack	Chiller	Circuit A	Circuit B	Overview	Set	tings	Diagnostics	C Refre
	System						Hyd	roLink Controller	
		Tempera	ature Contr	ol Settings	5			Options	
		Ma	nual Comr	nands				HMI	
		Load	Side Fluid	Settings				BACnet/MSTP Configuration	
		Source	Side Fluid	d Settings				Network Settings >	
		F	PID Contro	ller				Reboot Controller	
		(Configurat	ion					
		DIP	Switch Se	ettings					

DIAGNOSTICS

System Circuit A	Circuit B Trends Settings /	<i>Mater</i> Furnace.	
System 🔰		Circuit A	Circuit B
Circuite	High Pressure Switch	Closed	Closed
	Low Pressure Switch	Closed	Closed
JACE Controller	Emergency Shutdown	Inactive -	
	Load Shed	Inactive -	Inactive -
	Y1 (Stage 1)	On	Off
	Y2 (Stage 2)	Off	Off
	B (Cooling / Heating)	Off	Off
	Load (FP2) Temp	46.0 °F	47.7 °F
	Load (FP2) Temp Limit	30.0 °F	30.0 °F
	Source (FP1) Temp	119.2 °F	116.0 °F
	Source (FP1) Temp Limit	15.0 °F	15.0 °F
			Close Apply Save

HYDROLINK SUPERVISORY CONTROL

Water Fumace.

Commercial Solutions

HydroLink Supervisory Control

HYDROLINK SUPERVISORY CONTROL

- Supervisory/mechanical room duties
- In-house Custom Niagara Application Programming
- Includes mounted tablet display, JACE and enclosure.
 - Other components can be added per job.

HYDROLINK SUPERVISOR OVERVIEW

HYDROLINK SUPERVISORY APPLICATION

Thank You!

