

TSI Lab and Health Care Solutions

Jacco & Associates

Who is Jacco

- Established 1968
 - Hudson, Ohio
 - Columbus, Ohio
 - Toledo, Ohio
- Focused on the Engineered Environment
- Systems Knowledgeable
 - -HVAC Systems
 - -Service & Maintenance
 - —Parts

Who is Jacco

- Operations
 - -Brenda Homjak
 - -Mike Spangler
 - -Chad Russell
 - -Mike Mueller
 - -Hana Lee
- Contractor Owning Experience
 - -Dan Duignan
 - -Rick Baker
- Engineering Owning Experience
 - -Greg Drensky
 - –Jerry Cohen
- Owning Experience
 - -Beth Plazak
 - -Jeff Watson

Who is Jacco

Purpose:

To provide an unparalleled owning experience.

- •30 Minute Pledge
 - Design
 - Questions
 - Problems
 - Answers

Who is TSI

- Founded in 1961
- HQ in Minneapolis, MN
- Technology Driven Company

NIST — National Institute of Standards and Technology

NIST Uses TSI Sensors As Their Standard For Calibration!

TSI

- Largest Markets are in Health Care
- Labs/Pharmacies/OR
- Products
 - Pressure Monitors/Controllers
 - Flow Monitoring (Ebtron)
 - Sensors
 - Actuators
 - Particle Counters
 - More

PresSura Room Pressure Monitor/Control

Applications

- Isolation Rooms
- Operating Rooms
- Compounding Pharmacies
- Intensive Care Units
- Laboratories
- Avita Pharmacies, Aultman Hospital
- Monitor up to 3 rooms
- Monitor or Control
 - Temperature
 - Relative Humidity
 - Airflow with ACH Calculations
 - Door Switch
 - Occupancy Sensor

PresSura Room Pressure Monitor/Control

Features and Benefits

- Accurate Room Pressure
 Differential Measurement
 - Thermistor or Pressure Transducer
- 4.3 in. Flush-Mounted Color Touchscreen
- Integration to BMS via BACnet MS/TP, LonWorks and Modbus Communications
- Digital Interface Module has Audible and Visual Alarms

Nurses Station

Features & Benefits

- 8 rooms at a time
- Compatible with all TSI Room Pressure
- Audible and Visual Alarms
- Modbus/BACnet/LON

Thermistor vs Pressure Transducer

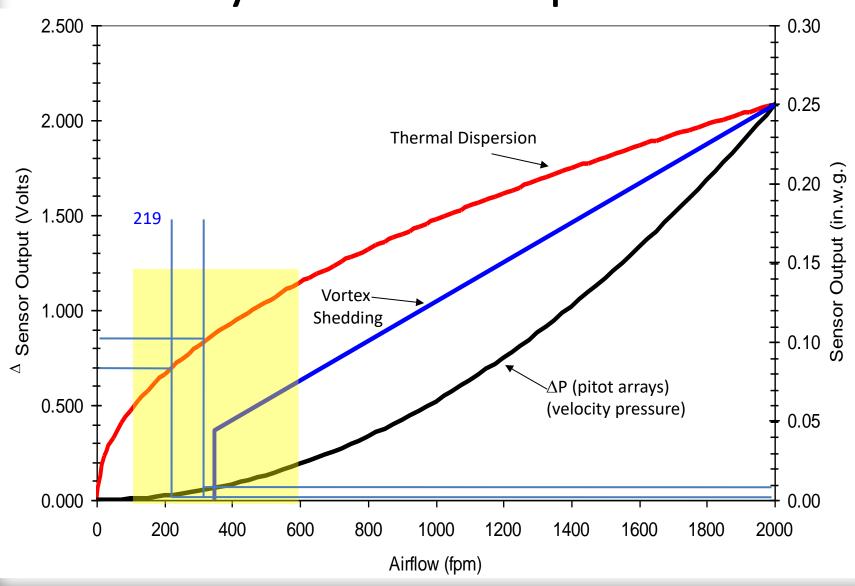
- Thermistor (Through the wall)
 - Accurate (+/- 10% of Reading)
 - 2 Hour UL Fire Listing
 - No Drift
 - Not good for applications that require wash down or allow air transfer

- Pressure Transducer
 - No issues with lint, dust, or dirt
 - Needs UL Listed Box for fire rating
 - Require Recalibration
 - +/- 15% Accuracy of Reading

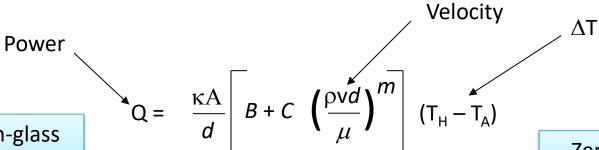
Pressure Transducer vs Thermistor

Accuracy over time (including stability)	Typical Pressure Transducer	TSI Through-the-wall Thermal Sensor
At Calibration	+/- 0.0019"* (±15.8% of actual reading)	+/- 0.0012" (±10% of actual reading)
End of Year 1	+/- 0.0029"* (±24.1% of actual reading)	+/- 0.0012" (±10% of actual reading)
End of Year 2	+/- 0.0039"* (±32.4% of actual reading)	+/- 0.0012" (±10% of actual reading)
End of Year 3	+/- 0.0049"* (±40.8% of actual reading)	+/- 0.0012" (±10% of actual reading)

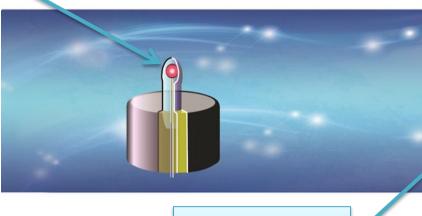
Flow Monitoring


Ebtron Air Flow Monitoring Station

- ±3% Accuracy
- Temperature Measurement ±0.15°F Accuracy
- Thermal Dispersion Technology
- Calibrated Range 0-5000 FPM
- Humidity Sensor Coming Soon!
- BACnet MSTP, Modbus RTU, 4-20 mA, 0-5 / 0-10 VDC



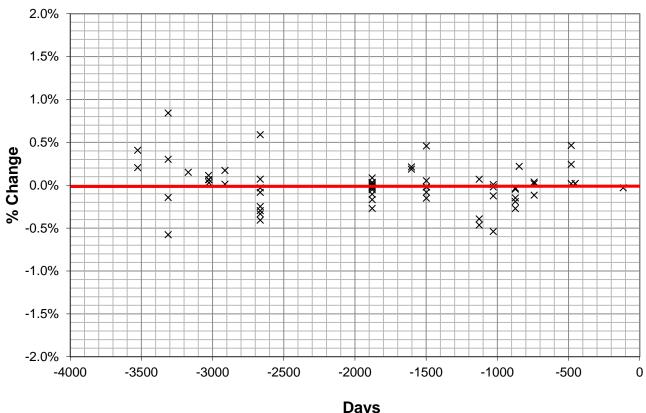
Why Thermal Dispersion



Ebtron How it works

Bead-in-glass thermistor probe

Zero-power thermistor

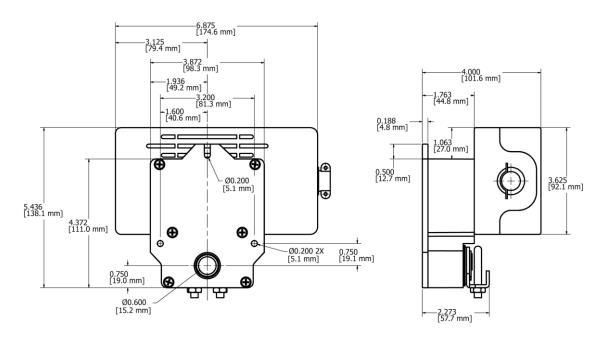

Self-heated thermistor

Long Term Stability

EBTRON Bead-in-glass Thermistor

Long term stability

Temperature and Humidity Sensor


- -/+ 5% Temperature Range
- 0-10VDC Temperature Set point Signal
- 0-100% RH Range
- +/-2% Humidity Sensor Accuracy
- UL Enclosure

Magnetic Actuator

- Fast Reacting, Slow Control
- 1,000 Points of Resolution
- Magnetic No Drift

Particle Counter

Applications

- Air Monitoring in Critical Infrastructures
- Monitor USP 797-800 Clean Spaces

Features and Benefits

- 0.3 to 50 Microns Size Range
- 0.1 CFM Flow Rate
- Internal Pump and Filtered Exhaust
- Modbus TCP over Ethernet Output
- 3000 Sample Record Storage for Data Redundancy

Fume Hood Controller

Applications

- Research Laboratories
- Life Science and Pharmaceutical
- Universities and Academic
- Healthcare Facilities

Fume Hood Control

- Using Side Wall Velocity Sensors
- Utilizing Sash Sensors

Flow Control

- Controls Damper or Valves with Fast Acting Actuator
- Linear Venturi Valves
- Measure Airflow With Ebtron

Fume Hood Controller

Features and Benefits

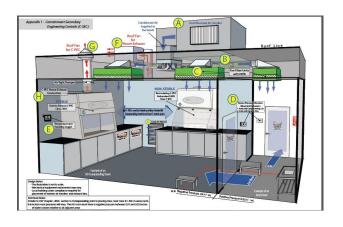
- Controls Fume Hood Face Velocity to Provide Containment and Safety to Occupants
- Reduces Laboratory Air Flow Usage
- Integration to BMS via BACnet, LonWorks or Modbus
- Visual, Audible and Remote Alarms
- Easy Configuration using Keypad or Configuration Software
- Large Configurable Display Provides Detailed Fume Hood Information

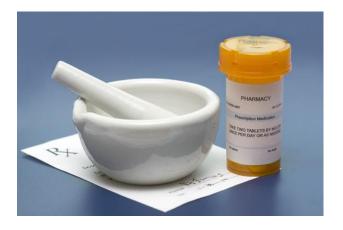
Velocity Sensors

Surface or Flush Mount Options Available

Laboratory Room Controller (LRC)

Features and Benefits


- Up to 32 Inputs and 10 Outputs
- Configurable Inputs and Outputs
- Serves up to 20 Fume Hoods
- BACnet IP, MS/TP, LonWorks, Modbus, N2
- Graphical Interface
- Create Interface using the Envysion Software
 - Easy Duplication of Configuration
- Zoning Features



Compounding Pharmacies and USP-800

USP Compounding Standards

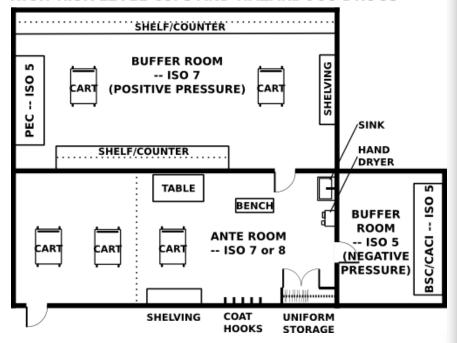
USP 797

Sterile, Non-Hazardous

- ENFORCED TODAY
- Temperature <68 F
- Humidity <60%
- Pressure +0.02"WC
- Air Changes 15-30
- Particles measured 6-12" in front of compounding

USP 800

Hazardous


- ENFORCED 12-1-19
- Pressure -0.01" to -0.03"WC
- Air Changes 30
- Particles measured 6-12" in front of compounding

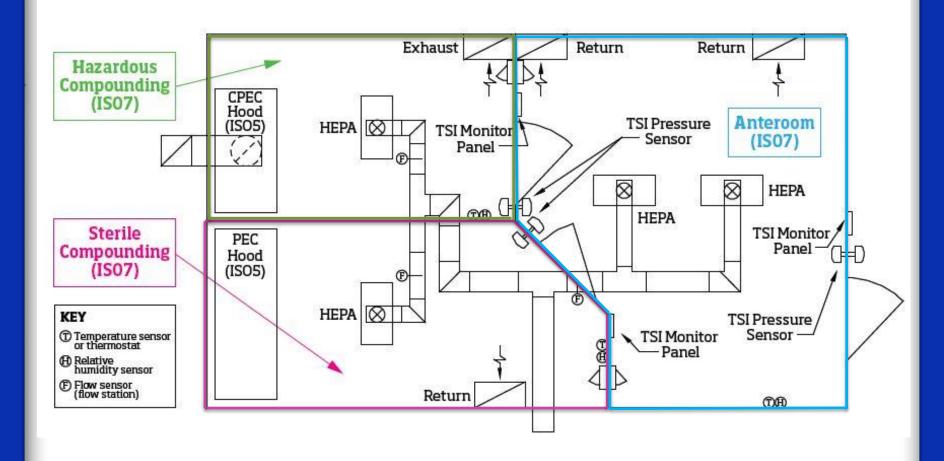
What is USP-800

- Applies to ALL HAZARDOUS compounding
 - All Hospitals
 - Outpatient Chemo Clinics
 - Diagnostic Facilities
 - Compounding Facilities
- Dictates HVAC Requirements
- Dictates Particle
 Contamination
- Enforceable by both
 FDA and States

EXAMPLE OF CLEAN ROOM FLOOR PLAN SUITABLE FOR HIGH-RISK LEVEL CSPs AND HAZARDOUS DRUGS

USP 800 HVAC Requirements

- 30 Air Changes/ hour
- Externally Vented Exhaust
- Negative Pressure
 - -0.01" to -0.03" W.C. to Adjacent Room
- ISO Class 7 Cleanroom
 - ISO Class Determines Maximum Concentration Limits For Particles
 - Class 7 Requires Particle Count Test Every 6 Months


Pharmacy Layout

Three Main Areas

- Anteroom
- Sterile Compounding
- Hazardous Compounding

USP 800 only requires these to be monitored, but how are these controlled?

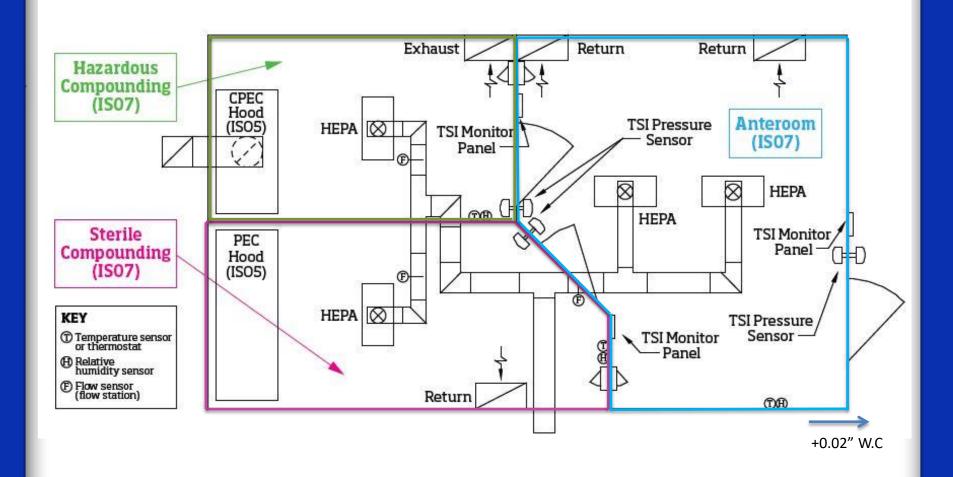
Monitoring Anteroom

- Requirements: Measure and Alarm
 - Room Pressure
 - Ventilation (ACH)
 - Room Temperature
 - Room Humidity

• Sequence:

- Constant Volume Supply And Exhaust
- +0.02" W.C. With Respect To Corridor
- Alarm On Room Pressure Differential, Supply Flow (ACH), Temperature, and Relative Humidity

Controlling Anteroom


Control:

- Ventilation (ACH)/Supply Flow
- Room Pressure Differential by adjusting exhaust flow
- Room Temperature
- Room Humidity

• Sequence:

- Room Temperature and Humidity Controlled By RTU
- Room Controller Modulates Supply To Maintain Flow
- Exhaust Modulates to Maintain Room Pressure
- +0.02" W.C. With Respect To Corridor
- Measures And Alarms On Room Pressure Differential, Supply Flow,
 Temperature And Relative Humidity

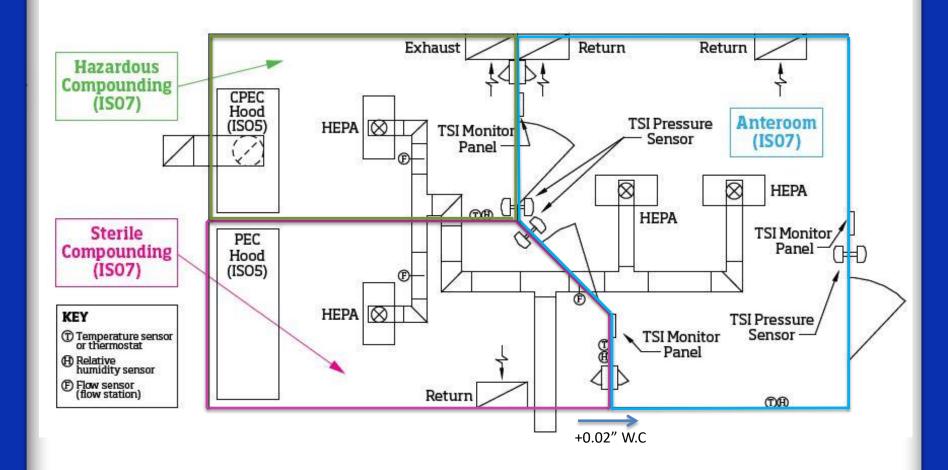
Monitoring Sterile Compound

- Requirements: Measure and Alarm
 - Room Pressure
 - Ventilation (ACH)
 - Room Temperature
 - Room Humidity

Sequence:

- Constant Volume Supply And Exhaust
- +0.02" W.C. With Respect To Anteroom
- Alarm On Room Pressure Differential, Supply Flow (ACH), Temperature, and Relative Humidity

Controlling Sterile Compounds


Control:

- Ventilation (ACH)/Supply Flow
- Room Pressure Differential by adjusting exhaust flow
- Room Temperature
- Room Humidity

• Sequence:

- Room Temperature and Humidity Controlled By RTU
- Room Controller Modulates Supply To Maintain Flow
- Exhaust Modulates to Maintain Room Pressure
- +0.02" W.C. With Respect To Anteroom
- Measures And Alarms On Room Pressure Differential, Supply Flow,
 Temperature And Relative Humidity

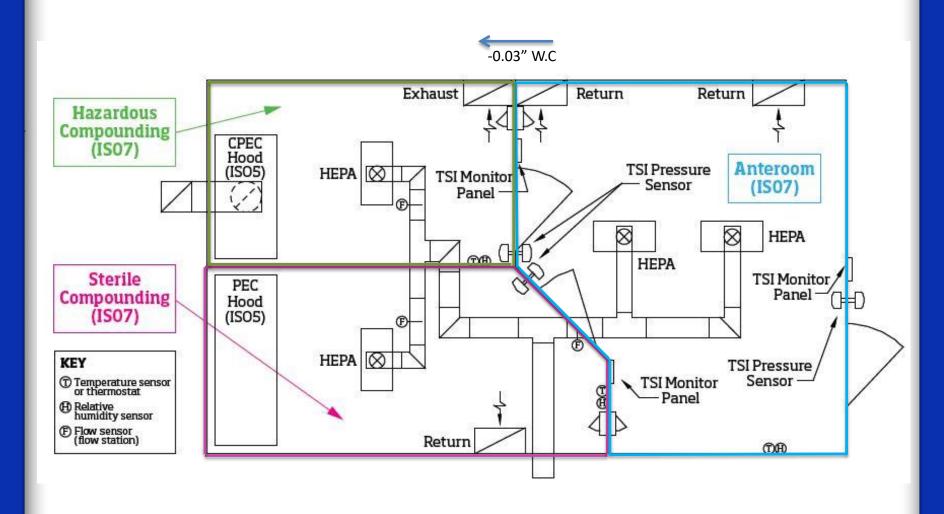
Monitoring Hazardous Compounding

- Requirements: Measure and Alarm
 - Room Pressure
 - Ventilation (ACH)
 - Room Temperature
 - Room Humidity

Sequence:

- Constant Volume Supply And Exhaust
- -0.03" W.C. With Respect To Anteroom
- Alarm On Room Pressure Differential, Supply Flow (ACH), Temperature, and Relative Humidity

Hazardous Compounding Room Control


Control:

- Ventilation (ACH)/Supply Flow
- Room Pressure Differential by adjusting exhaust flow
- Room Temperature
- Room Humidity

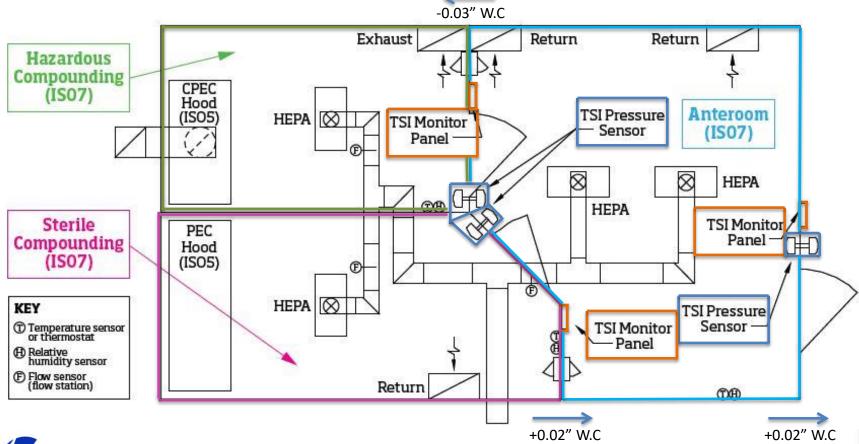
• Sequence:

- Room Temperature and Humidity Controlled By RTU
- Room Controller Modulates Supply To Maintain Flow
- Exhaust Modulates to Maintain Room Pressure
- -0.03" W.C. With Respect To Anteroom
- Measures And Alarms On Room Pressure Differential, Supply Flow,
 Temperature And Relative Humidity

Equipment you will need

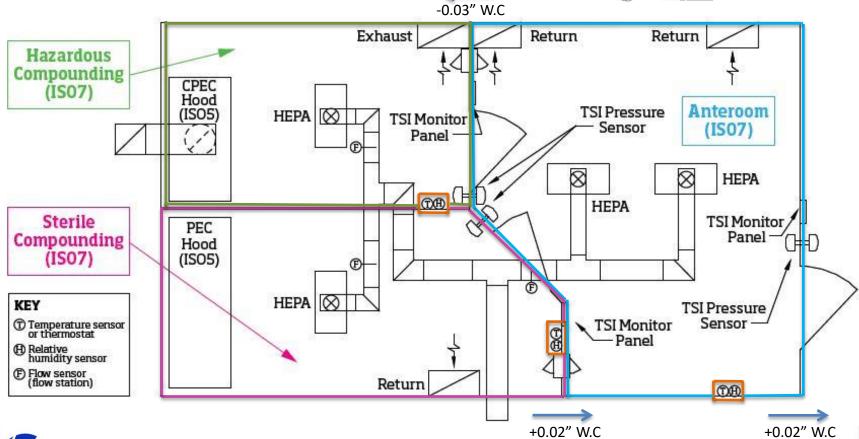
Monitoring

- PresSura Room Pressure Monitor
- Temperature and Humidity Sensor
- Airflow Station

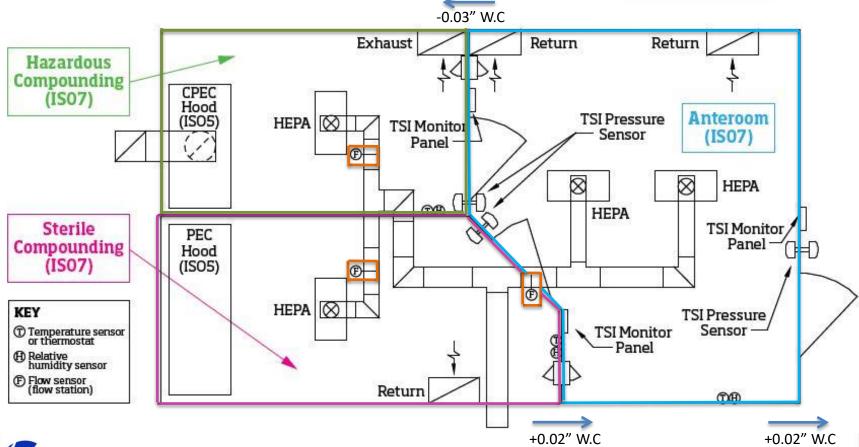

Control

- PresSura Room Pressure Controller
- Temperature and Humidity Sensor
- Airflow Station
- High-Speed Magnetic Actuators/Dampers

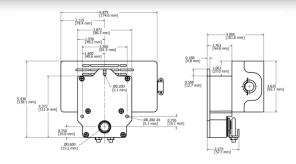
Pressure Room Pressure Monitor

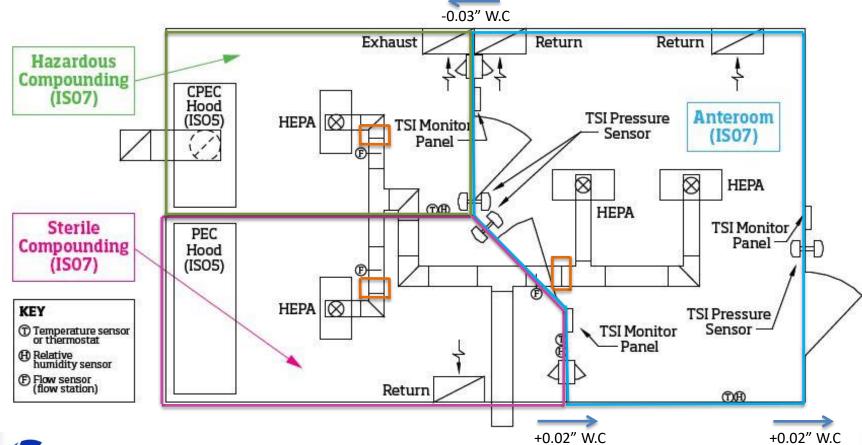


Temperature & Humidity Sensor



Air Flow Monitoring





Magnetic Actuator For Control

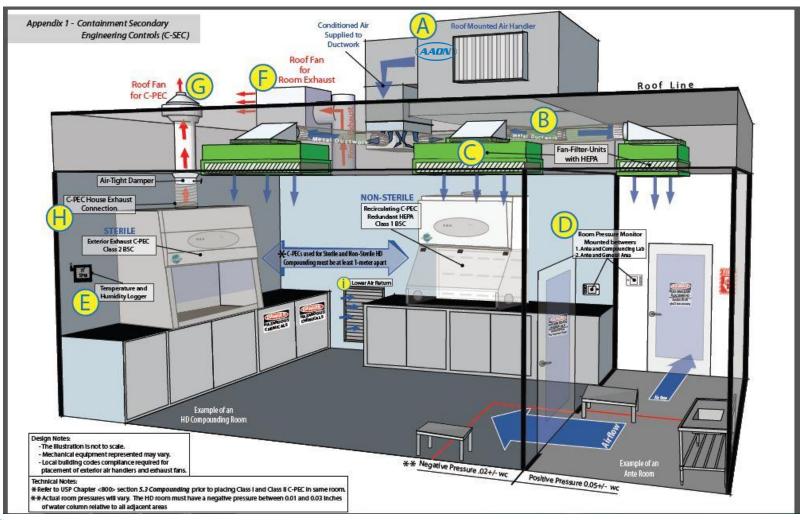
What About The Air Changes?

USP-800 Requires 30 Air Changes Per Hour

- ACH = CFM * 60/Room Volume
 - 1,000 sq.ft Hazardous Compounding Pharmacy
 - 10,000 cu.ft
 - CFM=ACH*Room Volume/60
 - CFM = 30*10,000/60
 - CFM = 5,000

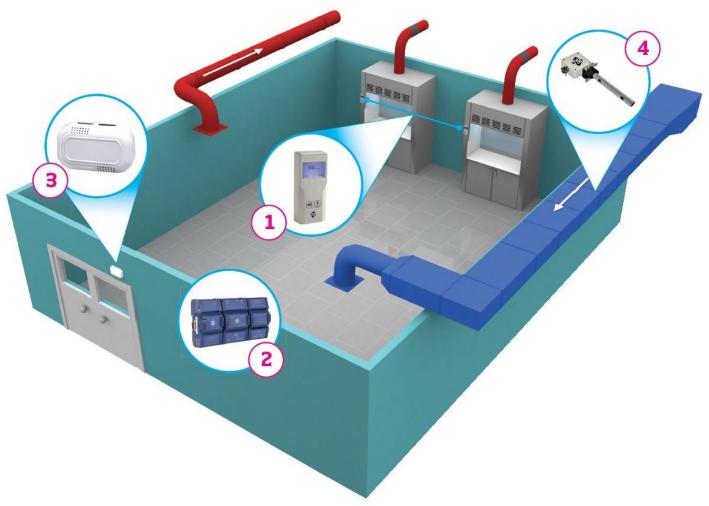
Aaon For Air Changes

- Capable Of High Outside Air Loads
- Precise Temperature/Humidity Control
 - Can Accurately Control To +/-1° F
 and +/- 5% RH
 - Modulating Hot Gas Reheat
 - Modulating Compressors
 - Modulating Condenser Fans
 - Modulating Heat (Gas/Electric)
- Maintain Room Pressure
 - VFD Supply/Exhaust Fans
 - Tie In Room Pressure Directly

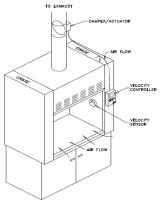


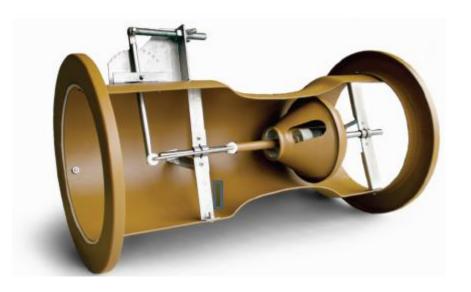
Pull It All Together

USP-800 Questions?


Lab and Fume Hoods

What's in a Lab Project




Sash Sensing With Venturi Valve

 Calculates Venturi valve position to change airflow based on sash position.

Valve Per Hood

• Valve For General Exhaust

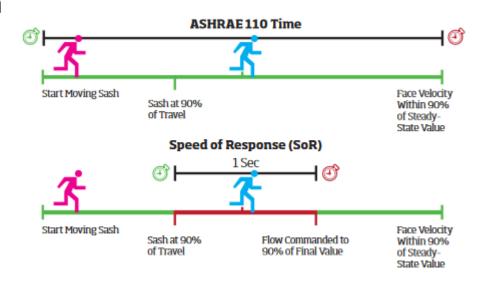
Velocity Sensing

 The Velocity Sensor Measures the velocity thought the hood, airflow monitoring and damper insure proper airflow

- Velocity Sensor Per Hood
- Air Flow Monitor Hoods/Ex/Supply

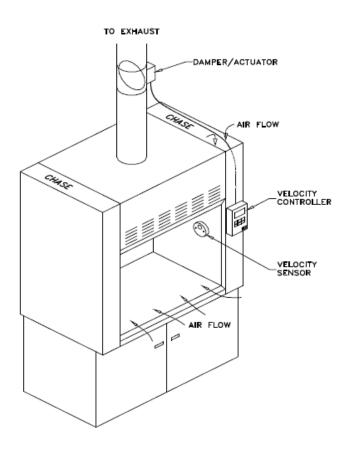
Sash Sensing vs Velocity Sensing

	Venturi Valve	Damper and Thermal Flow Station
Pressure Drop	1"-3"	0.01" -0.1"
Sound	NC upper 30s	NC lower 20s
Cost	High	Low
Pressure Independence	Yes, via an internal spring	Yes, via a flow measurement
Measurement Accuracy	No flow measurement	±3%
Metering Accuracy	±5%	±3%
Device Length	24"-30"	24"-30" includes straight run
Turn down ratio	16:1	6:1

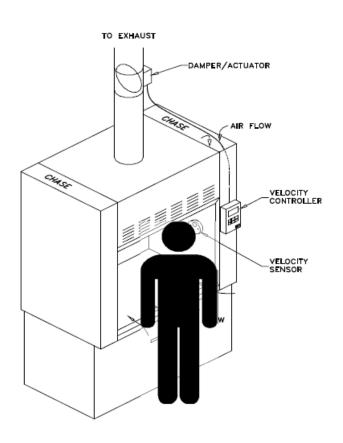


Speed of Response

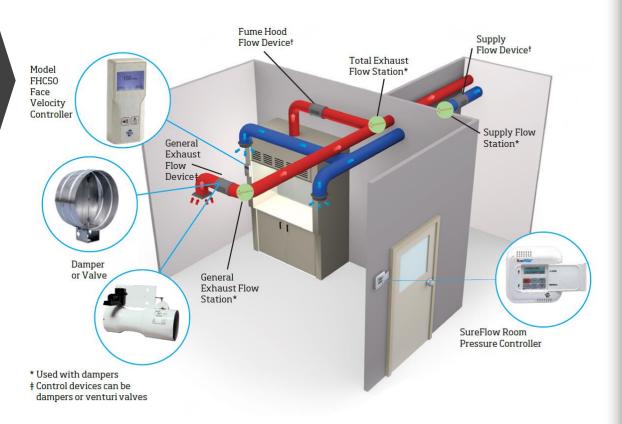
ANSI / ASHRAE 110


Start Time – When the sash starts moving

- Stop Time When face velocity is within 90% of steady state (90-100fpm
- Response Time less than 3 seconds



Sash Sensing vs Velocity


Sash Sensing vs Velocity

What happens if you are standing in front of the hood?

The TSI Solution

Phoenix Controls	Siemens	Accutrol
Venturi Valves	Venturi Valves or Dampers	Dampers
Sash Position	Sash Position, Some Sidewall	Sash Position
NO Flow Measurement	100% Orifice Ring Flow Measurement	Vortex Shedding Flow Measurement

Triatek	CRC	Price - Antec
Venturi Valves	Dampers	Venturi Valves or Dampers
Sash Position, Sidewall, or Both	Sash Position or Sidewall	Sash Position, Sidewall or Both
No Flow Measurement	Venturi Flow Measurement / Damper Control	No Flow Measurement (Venturi), VAV box flow measurement, Venturi flow measurement

What Does It Cost?

Sash Sensing

Velocity Sensing

Equipment – \$3,450

Install/Balance – \$675

Total- \$4,125

Equipment – 3,330

Install/Balance - \$340

Total- \$3,670

Laboratory Room Controller (LRC)

Features and Benefits

- Up to 32 Inputs and 10 Outputs
- Configurable Inputs and Outputs
- Serves up to 20 Fume Hoods
- BACnet IP, MS/TP, LonWorks, Modbus, N2
- Graphical Interface
- Create Interface using the Envysion Software
 - Easy Duplication of Configuration
- Zoning Features

LAB ROOM CONTROLLER

CONFIGURATION

Home

- ▶ 🛐 I/O SETUP
- ▶ F⊓ I/O TAGS
- ▶ 🔄 CONFIG/CALIBRATION
- ▶ ₹ SETPOINTS
- ▶ ₱☐ CONTROL
 - Balance Mode
 - Diagnostics
 - Reset to Defaults
 - △ ALARM STATUS
 - Contact Us

Home

Room Name

CE Laboratory

Room Mode

Standard

Offset Setpoint

 $0.0^{\rm cfm}$

Current Total Supply Flow

 $0.0^{\rm cfm}$

Current Total Exhaust Flow

 $0.0^{\rm cfm}$

Current Offset

0 0 cfm

Pressure Mode

Room Pressure

Normal

-0.1 inH2O

To Download Manual visit www.tsi.com

LAB ROOM CONTROLLER

CONFIGURATION

▶ ET VO SETUP

▶ F" NO TAGS

▶ ET CONFIG/CALIBRATION

▶ E SETPOINTS

F CONTROL

Balance Mode

(I) Diagnostics

Reset to Default

ALARM STATUS

Contact Us

DIAGNOSTICS

Room Pressure Rel Humidity
-0.1 in Et o 0.0 %

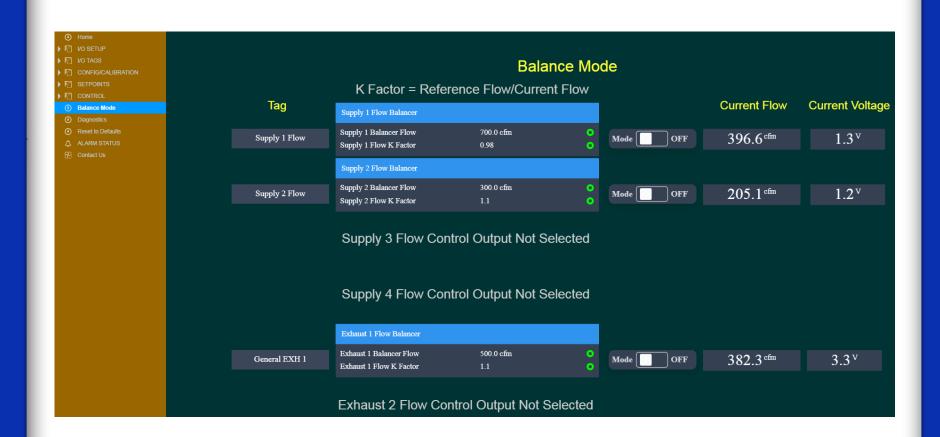
Occupants /	Status
Supply 1 Occupan	xy OCCUPIED O
Supply 2 Occupan	ky UNOCCUPIED O
Supply 3 Occupan	CV OCCUPIED O
Supply 4 Occupan	

Switch Status		
Door Mode	OPEN	0
Emergency Mode	NORMAL	0
Shutdown Mode	NORMAL.	0

Supply DAT	Temp		
Supply 1 DAT	50.0°F		
Supply 2 DAT	0.0°F		
Supply 3 DAT	0.0°F		
Supply 4 DAT	0.0°F		

	Supply 4 DAT	U.V.F.		
ĺ	Temp Adjustment	Adjustments		
	Supply 1 Temp Adj	0.0°F		
	Supply 2 Temp Adj	0.0°F		
	Supply 3 Temp Adj	0.0°F		
	Supply 4 Temp Adj	0.0°F		
	Envysion version 1.0	Gfx version 15		

Controller Mode Standard	Offset	Setp ill	O.0 cfm		Supply) ^{cfin}		al Exhaust 0.0 cm
Temp Zone	Temp	Heat Se	et Cool Set	% Open	Mode		Manual Pos
	MILITARIA					100	


Temp Zone	Temp	Heat Set	Cool Set	% Open	Mode		Manual	Pos
Supply 1 Room Temp	0.0°F	68.0°F	72.0°F	0.0%	AUTO	0	50.0×	0
Supply 2 Room Temp	0.0°F	62.0°F	78.0°F	0.0%	AUTO	0	50.0%	0
Supply 3 Room Temp	0.0°F	68.0°F	72.0°F	0.0%	AUTO	0	50.0*	0
Supply 4 Room Temp	0.0°F	68.0°F	72.0°F	0.0%	AUTO	0	50.0*	0

Flow Device	Flows	Volt	Setpoint	% Open	Mode		Mamual	Pos
Supply 1 Flow	0.0 cfm	0.0 V	0.0 cfm	59.2%	AUTO	0	50.0*	0
Supply 2 Flow	0.0 cfm	0.0 V	0.0 cfm	0.0%	AUTO	0	50.0 H	0
Supply 3 Flow	0.0 cfm	0.0 V	0.0 cfm	0.0%	AUTO	0	50.01	0
Supply 4 Flow	0.0 cfm	0.0 V	0.0 cfm	0.0%	AUTO	0	50.0 ×	0
General EXH 1	0.0 cfm	0.0 V	0.0 cfm	59.2%	AUTO	0	50.0 N	0
Exhaust 2 Flow	0.0 cfm	0.0 V	0.0 cfm	0.0%	AUTO	0	50.0*	0

Hood Flow	Flows	Volt
Hood 1 Flow	0.0 cfm	0.0 V
Hood 2 Flow	0.0 cfm	0.0 V
Hood 3 Flow	0.0 cfm	0.0 V
Hood 4 Flow	0.0 cfm	0.0 V
Hood 5 Flow	0.0 cfm	0.0 V
Hood 6 Flow	0.0 cfm	0.0 V
Hood 7 Flow	0.0 cfm	0.0 V
Hood 8 Flow	0.0 cfm	0.0 V
Hood 9 Flow	0.0 cfm	0.0 V
II	0.0 cfm	00V

Hood Flow	Flows	Volt
Hood 11 Flow	0.0 cfm	0.0 V
Hood 12 Flow	0.0 cfm	0.0 V
Hood 13 Flow	0.0 cfm	0.0 V
Hood 14 Flow	0.0 cfm	0.0 V
Hood 15 Flow	0.0 cfm	0.0 V
Hood 16 FLow	0.0 cfm	0.0 V
Hood 17 Flow	0.0 cfm	0.0 V
Hood 18 Flow	0.0 cfm	0.0 V
Hood 19 Flow	0.0 cfm	0.0 V
Hood 20 Flow	0.0 cfm	0.0 V

Lab Control Strategies

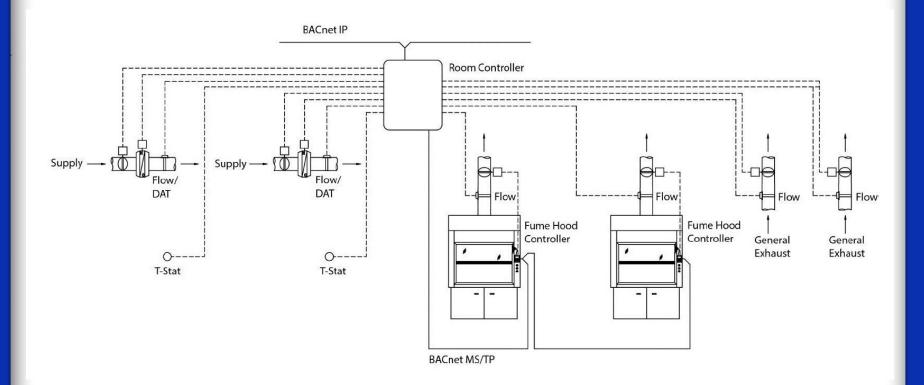
- Offset
- Offset with Pressure Monitoring
- Adaptive Offset

Offset Sequence

General Sequence of Operation

 The room controller simultaneously controls room supply and exhaust to maintain room balance, ventilation and temperature in the laboratory.

Room Balance Sequence of Operation


- The room controller continuously measures supply and exhaust flows in order to maintain room balance.
- If the offset becomes too large, indicating that the room balance is too negative, the room controller proportionally closes each general exhaust. If the offset is still too large, the room controller will then proportionally open each supply to its maximum setpoint.
- If the offset becomes too small, indicating that the room balance is not negative enough or
 positive, the room controller proportionally closes each supply to its minimum ventilation or
 cooling flow setpoint. If the offset is still too small, the room controller will then
 proportionally open each general exhaust.

Ventilation (ACH) Control Sequence of Operation

 The room controller continuously measures and maintains each zone supply at or above its minimum setpoint

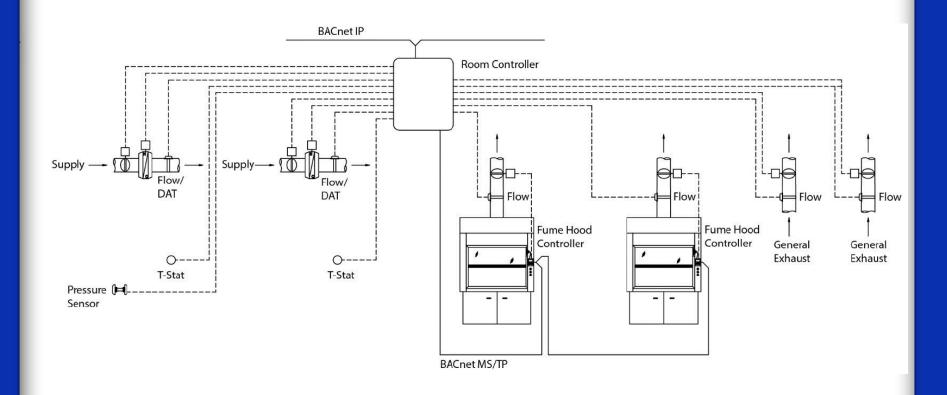
Offset

Offset with Pressure Monitoring Sequence

General Sequence of Operation

• The room controller simultaneously controls room supply and exhaust to maintain room balance, ventilation and temperature in the laboratory.

Room Balance Sequence of Operation


- The room controller continuously measures supply and exhaust flows in order to maintain the room balance.
- If the offset becomes too large, indicating that the room balance is too negative, the room controller proportionally closes each general exhaust. If the offset is still too large, the room controller will then proportionally open each supply to its maximum setpoint.
- If the offset becomes too small, indicating that the room balance is not negative enough or positive, the room controller proportionally closes each supply to its minimum ventilation or cooling flow setpoint. If the offset is still too small, the room controller will then proportionally open each general exhaust.
- The room controller continuously measures room pressure differential. If room pressure differential is too negative or too positive, the room controller will alarm.

Ventilation (ACH) Control Sequence of Operation

• The room controller continuously measures and maintains each zone supply at or above its minimum setpoint.

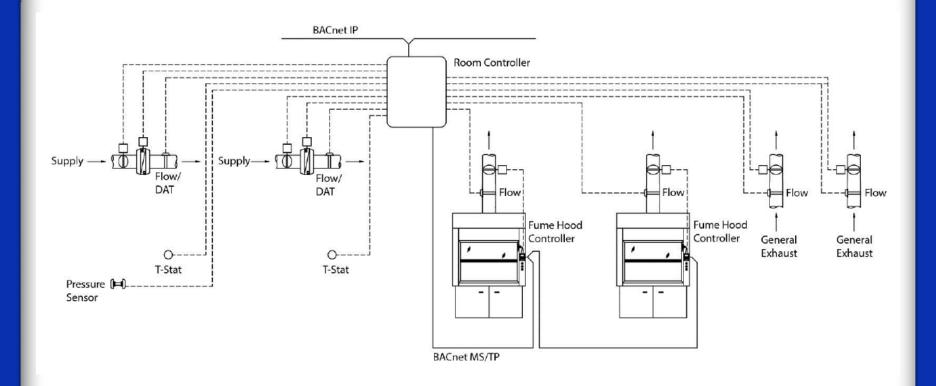
Offset with Pressure Monitoring

Adaptive Offset

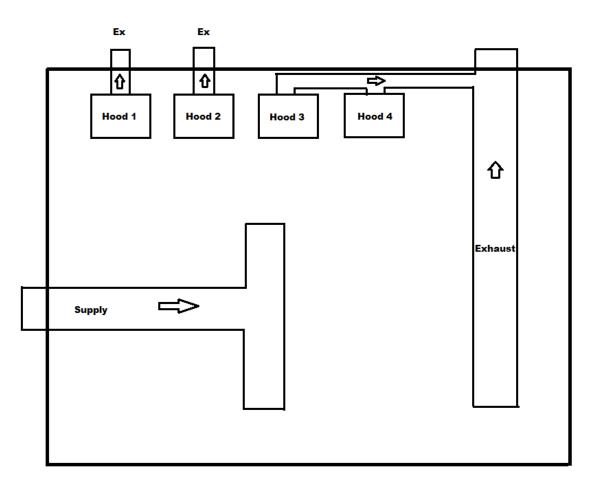
General Sequence of Operation

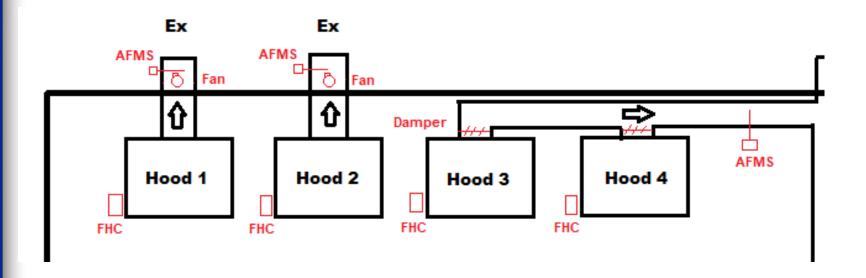
 The room controller simultaneously controls room supply and exhaust to maintain room balance, ventilation and temperature in the laboratory.

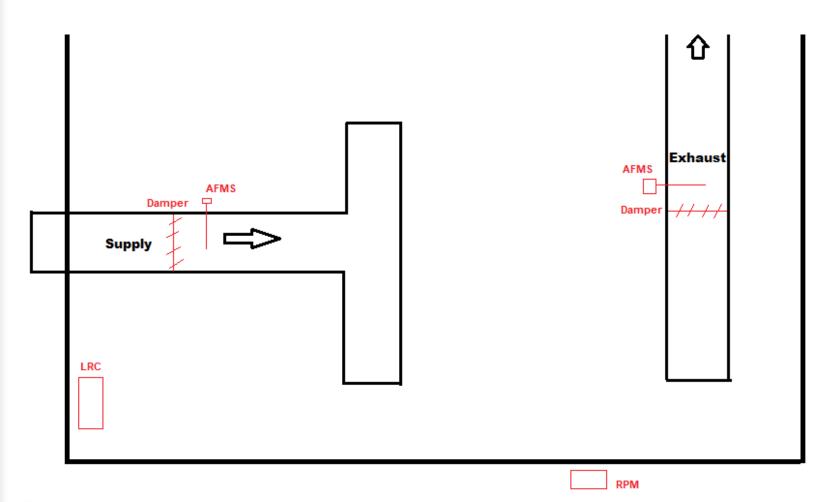
Room Balance Sequence of Operation

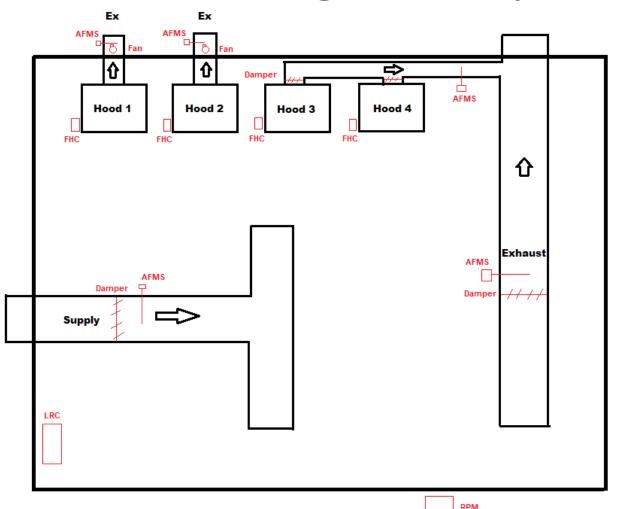

- The room controller continuously measures supply and exhaust flows in order to maintain the flow offset.
- If the offset becomes too large, indicating that the room balance is too negative, the room controller proportionally closes each general exhaust. If the offset is still too large, the room controller will then proportionally open each supply to its maximum setpoint.
- If the offset becomes too small, indicating that the room balance is not negative enough or positive, the room controller proportionally closes each supply to its minimum ventilation or cooling flow setpoint. If the offset is still too small, the room controller will then proportionally open each general exhaust.
- The room controller continuously measures room pressure differential. If the room pressure differential is too negative, the room controller will slowly increase the flow offset within field-configurable limits. If the room pressure differential is too positive, the room controller will slowly decrease the flow offset within field configurable limits.

Ventilation (ACH) Control Sequence of Operation


• The room controller continuously measures and maintains each zone supply at or above its minimum setpoint.


Adaptive Offset





Questions?

Jacco & Associates