

December 12, 2018

Advanced Desiccant Dehumidification Technologies

DESICCANT FUNDAMENTALS PSYCHROMETRICS REVIEW

Mark Welker

Psychrometric Chart:

CD

CDI is the Premier Provider of Desiccant and Air Handling Systems

Relative Humidity:

Relative Humidity (%) is the ratio of:

- Actual water vp <u>in the air</u> vs.
- The water vp if the air were saturated at that same dry bulb temperature.
- Not an absolute value dependant upon the db at which it was measured.

Humidity Ratio (Specific Humidity):

Humidity Ratio (lb/lb or gr/lb) is the <u>absolute amount of moisture</u> in the air.

- This is like counting the water molecules and adding their weight together.
- There are 7000 grains in one pound of water.

Vapor Pressure:

- Vapor Pressure (in. Hg) is the pressure exerted by water molecules on their surrounding environment. This is an <u>absolute measurement</u>.
 - Unit of measure is inches of mercury, which tells us how high the vapor pressure can lift a column of mercury due to its own pressure.
- This is the driving force behind how the desiccant dehumidifiers attract water molecules out of the air and into their surface.

Dew Point:

- Dew Point (°F) is the temperature where moisture will condense out of the air onto nearby surfaces forming "dew".
- This is an <u>absolute measurement</u>.
- The higher amount of moisture in the air, the higher the dew point.

GENERAL OVERVIEW OF DEHUMIDIFICATION SYSTEMS

Common Mechanical Based Systems:

Direct Expansion System

Chilled Water, Glycol or Brine System

Mechanical vs Desiccant Application:

Air is circulated over a cold coil and cooled to saturation.

Relatively "Lower First Cost" type systems.

However...

Dewpoint reduction is physically limited.

- Min CC LAT's: <u>43°F db/42.9°F wb</u> (99.2% RH & 32°F SST).
- Running these systems at or below 32°F SST will:
 - Cause coils to frost up requires HGRH Cycles to defrost
 - Defrosting is not Dehumidifying
 - If NOT Dehumidifying what happens to your Control Level
 - Likely add reheat to meet required LAT conditions
 - Added Energy + Downtime = \$\$\$

Refrigeration vs Desiccant

Mechanical System: Deposition (Vapor to Solid): Ice crystals form on surfaces w/o going through liquid phase

Desiccant System: Sublimation (Solid to Vapor): Ice crystals are removed from surfaces w/o going through liquid phase.

What Desiccant Dehumidification is NOT:

- NOT a Substitute for Cool/Reheat in Comfort Applications
- NOT an Energy Saving Scheme
- NOT a Cost Saving Scheme
- NOT a Heat Wheel

2. DESORPTION (REACTIVATION) PHASE:

- o Desiccant releases water.
- VP of desiccant is higher than that of reactivation air stream.
- Moisture is passed into the reactivation air stream.
- Activated by very hot air stream of 250+°F (high temp & high moisture = high vapor pressure).

3. COOLING PHASE:

- Desiccant cools to original state.
- VP of desiccant is lower than the conditioned air stream.
- Wheel's surface is warm and dry (110 to 135° F).
- Needs to be cooled before ad(b)sorbtion occurs (low temp & low moisture = low VP).
- Optimal Range: 50 to 90°F.

Desiccant moisture content

- □ VP differential dictates where moisture migrates
 - Even against air flow direction
- Efficient year round:
 - Colder air actually increases the wheel's efficiency. Desiccant is at optimum performance at 50F to 55F
- Will not "over cool" space or require defrosting cycles. This means consistent controllable humidity and temperature independent of one another

APPLICATIONS

Welker's Rules of Engagement

First Rule: Do as much moisture removal as possible with refrigeration.

Second Rule: See First Rule.

Applications That BENEFIT from DESICCANT DEHUMIDIFICATION

- Very Dry Air Required
- Independent Control of Temperature/ Humidity
- Fog or Condensation Control
- Control of Dripping (Excessive Condensation)
- Enhanced Indoor Air Quality
- Improved Safety & Comfort
- Structural Decay (Corrosion) Prevention
- Mold or Bacteria Control
- Improved Process Operation

Understanding the Application Requirements

Inside Conditions - How Dry?

- Dry enough to achieve the maximum economic benefit—and no drier.
- Humidity control projects are often the <u>result of summer problems</u>
- So ... What is the moisture condition during the winter when no problem occurs?
- Wide range of parameters / requirements "No Silver Bullet"

Food Plant Applications:

- Temperature: -40 80+F
- Humidity: 1 50% RH
- Pressurization: Negative to Positive
- Ventilation: 0 100% OA
- Filtration: 30% HEPA

Dry Storage Applications:

- Temperature: 30+F
- Humidity: 0 50% RH
- Pressurization: Negative to Positive
- Ventilation: 0-100% OA
- Filtration: 30% HEPA

Pharmaceutical Applications:

- Temperature: 55 200F
- Humidity: 10 70% RH
- Pressurization: Negative to Positive
- Ventilation: 0 100% OA
- Filtration: 30% HEPA

Manufacturing Process

- Applications:
- Temperature: 55 200F
- Humidity: 0.1 70% RH
- Pressurization: Negative to Positive
- Ventilation: 0 100% OA
- Filtration: 30% HEPA

General Application Categories

- Corrosion Prevention
- Condensation Prevention
- Mold & Fungus Prevention
- Moisture Regain Prevention
- Product Drying

Hospitals: Conventional Cool-Reheat System

Utilizes chiller plant to minimize low temperature chiller tonnage

Hospitals: Desiccant System

Eliminates low temperature chiller and reduces required tonnage

Hospitals: Split-Stream Desiccant System

Can be configured to work with existing installations

Animal Surgical Center Retrofit : Maintain at 62-63 dry bulb and 39-40% RH. Existing 7.5 Ton AHU @ 3,000 CFM (space maintained at 37 degree dew point - DHU supplies 24 deg dew point / mixed provides 32.1 degree dew point)

AIR MIXTURE				VFB DEHUMIDIFIER PERFORMANCE:
1 st AIR STREAM:				TEMP IN 67.5
900	CFM	1,800		GR. IN 56.9
62	TEMP	62		= 109.6 TEMP. OUT
32.5	GR/LB	32.5		18.1 GR. OUT
2 nd AIR STREAM:				LBS. PER HOUR MOISTURE REMOVAL
300	CFM	1,200		CFM 3,000
84	TEMP	109.6		GR. IN 32.5
130	GR/LB	18.1		GR. OUT 18.1 14.4 ∆ GRAINS
	MIXTURE=			= 27.77 LB/HR 666.5 LB/DAY
1,200	CFM	3,000		194,400 GR/HR 4,665,600 GR/DAY
67.5	TEMP	81.0		3.3 GAL/HR 79.9 GAL/DAY
56.9	GR/LB	26.7		26.6 PINTS/HR 639.3 PINTS/DAY
PRE-COOLING				POST-COOLING
CFM	0	AMB.	TEMP = <mark>95</mark>	CFM 3,000 AMB. TEMP = 95
WB IN	0.0		SST = ERR	DB IN 81.0 SST = 45
WB OUT	0.0		SEE ENG	DB OUT 55.0
TOTAL COO	LING CAP. =	#VALUE!	BTUH	TOTAL COOLING CAP. = 84,240 BTUH
		#VALUE!	TONS	7.0 TONS
COND. UNIT	SIZE REQ. =	SEE ENG	TON	COND. UNIT SIZE REQ. = 7.5 TON
H₂O IN	42			H_2O IN 42
	52			H ₂ O OUT 52
	=	#VALUE!	GPM	= 16.8 GPM
GLYCOL Y	/N N	#VALUE!	" PIPE DIA.	GLYCOL Y/N N 1 " PIPE DIA.
COIL AREA, SF @ \	/ELOCITY = _	0.0	400 FPM	COIL AREA, SF @ VELOCITY = 5.0 600 FPM
PRELIM. SIZ	ZE: W x H =		0.0 inches	PRELIM. SIZE: W x H = 39 18.8 inches

Stop Condensation on Chilled Molds

- Allow Production during humid weather
- Increase production cycle times
- Reduce waste product

